Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Induction of AKR1C2 by Phase II Inducers: Identification of a Distal Consensus Antioxidant Response Element Regulated by NRF2

Huan Lou, Shouying Du, Qing Ji and Andrew Stolz
Molecular Pharmacology May 2006, 69 (5) 1662-1672; DOI: https://doi.org/10.1124/mol.105.019794
Huan Lou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shouying Du
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qing Ji
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew Stolz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

AKR1C2, also referred to as the human bile acid binder and 3α-hydroxysteroid dehydrogenase type III, is a multifunctional oxidoreductase able to stereoselectively reduce steroids as well as oxidize or reduce polyaromatic hydrocarbons. Previously, this same protein was also identified by its robust induction by phase II inducers in HT29 cells. In HepG2 cells, both AKR1C2 and AKR1C1 (97% sequence homology) were induced by phase II inducers but not the highly related AKR1C3 and AKR1C4 family members (84% sequence homology). We now report the initial characterization of the proximal promoter of AKR1C2 in HepG2 cell line and the identification of a potent enhancer-like element responsive to phase II inducers located approximately 5.5 kilobases upstream from the transcription start site. DNA sequence analysis of this enhancer element revealed that it contained a consensus antioxidant response element (ARE), which was confirmed by mutation analysis. Treatment with phase II inducers leads to increased accumulation of nuclear factor-erythroid 2 p45-related factor (NRF) 2 in the nucleus, which was associated with increased binding to this ARE as determined by electrophoretic mobility shift assay. Transient transfection with Nrf2 increased the transcriptional activity of the ARE of AKR1C2 comparable with that observed with phase II inducers. Chromatin immunoprecipitation (ChIP) analysis also confirmed increased NRF2 binding to the ARE after induction by a phase II inducer. The AKR1C1 promoter also harbored this same ARE element in a highly homologous region, which was also bound by NRF2 in a ChiP analysis. No induction of the ARE of AKR1C2 was detected in Nrf2-/- fibroblasts. The regulation of AKR1C2 by this distal ARE suggests that AKR1C2 detoxifies products of reactive oxidant injury, which has important implications for both hormone and xenobiotic metabolism.

  • Received October 11, 2005.
  • Accepted February 14, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (5)
Molecular Pharmacology
Vol. 69, Issue 5
1 May 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Induction of AKR1C2 by Phase II Inducers: Identification of a Distal Consensus Antioxidant Response Element Regulated by NRF2
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Induction of AKR1C2 by Phase II Inducers: Identification of a Distal Consensus Antioxidant Response Element Regulated by NRF2

Huan Lou, Shouying Du, Qing Ji and Andrew Stolz
Molecular Pharmacology May 1, 2006, 69 (5) 1662-1672; DOI: https://doi.org/10.1124/mol.105.019794

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Induction of AKR1C2 by Phase II Inducers: Identification of a Distal Consensus Antioxidant Response Element Regulated by NRF2

Huan Lou, Shouying Du, Qing Ji and Andrew Stolz
Molecular Pharmacology May 1, 2006, 69 (5) 1662-1672; DOI: https://doi.org/10.1124/mol.105.019794
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics