Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

IκB Kinase-2-Independent and -Dependent Inflammation in Airway Disease Models: Relevance of IKK-2 Inhibition to the Clinic

Mark A. Birrell, Sissie Wong, Elizabeth L. Hardaker, Matthew C. Catley, Kerryn McCluskie, Michael Collins, Saleem Haj-Yahia and Maria G. Belvisi
Molecular Pharmacology June 2006, 69 (6) 1791-1800; DOI: https://doi.org/10.1124/mol.105.019521
Mark A. Birrell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sissie Wong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elizabeth L. Hardaker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew C. Catley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kerryn McCluskie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Collins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Saleem Haj-Yahia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maria G. Belvisi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Nuclear factor κB (NF-κB) is a transcription factor believed to be central in the expression of numerous inflammatory genes and the pathogenesis of many respiratory diseases. We have previously demonstrated increased NF-κB pathway activation in a steroid-sensitive animal model of lipopolysaccharide (LPS)-driven airway inflammation. It is noteworthy that this phenomenon was not observed in a steroid-insensitive model of elastase-induced inflammation in the rat. The aim of this study was to gather further evidence to suggest that these similar profiles of neutrophilic inflammation can be NF-κB-dependent or -independent by determining the impact of an IκB kinase-2 (IKK-2) inhibitor, 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1). In the LPS model, TPCA-1 blocked the increase in NF-κB DNA binding, a marker of NF-κB pathway activation. This inhibition was associated with a reduction in inflammatory mediator release [tumor necrosis factor α (TNFα)/interleukin-1β (IL-1β)/matrix metalloproteinase-9 (MMP-9)] and lung inflammatory cell burden (neutrophilia/eosinophilia). These data were paralleled with a steroid and in human cell based assays. In the elastase-driven inflammation model, in which our group has previously failed to measure an increase in NF-κB DNA binding, neither TPCA-1 nor the steroid, affected mediator release (IL-1β/MMP-9) or cellular burden (neutrophilia/lymphomononuclear cells). This is the first study to examine the effect of an IKK-2 inhibitor in well validated models that mimic aspects of the inflammatory lesion evident in diseases such as COPD. In conclusion, we have demonstrated that animal models with similar profiles of airway inflammation can be IKK-2 inhibitor/steroid-sensitive or -insensitive. If both profiles of inflammation exist in the clinic, then this finding is extremely exciting and may lead to greater understanding of disease pathology and the discovery of novel anti-inflammatory targets.

  • Received October 3, 2005.
  • Accepted March 2, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (6)
Molecular Pharmacology
Vol. 69, Issue 6
1 Jun 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
IκB Kinase-2-Independent and -Dependent Inflammation in Airway Disease Models: Relevance of IKK-2 Inhibition to the Clinic
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

IκB Kinase-2-Independent and -Dependent Inflammation in Airway Disease Models: Relevance of IKK-2 Inhibition to the Clinic

Mark A. Birrell, Sissie Wong, Elizabeth L. Hardaker, Matthew C. Catley, Kerryn McCluskie, Michael Collins, Saleem Haj-Yahia and Maria G. Belvisi
Molecular Pharmacology June 1, 2006, 69 (6) 1791-1800; DOI: https://doi.org/10.1124/mol.105.019521

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

IκB Kinase-2-Independent and -Dependent Inflammation in Airway Disease Models: Relevance of IKK-2 Inhibition to the Clinic

Mark A. Birrell, Sissie Wong, Elizabeth L. Hardaker, Matthew C. Catley, Kerryn McCluskie, Michael Collins, Saleem Haj-Yahia and Maria G. Belvisi
Molecular Pharmacology June 1, 2006, 69 (6) 1791-1800; DOI: https://doi.org/10.1124/mol.105.019521
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics