Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Mutations Distal to the Substrate Site Can Affect Varicella Zoster Virus Thymidine Kinase Activity: Implications for Drug Design

Kamel El Omari, Sandra Liekens, Louise E. Bird, Jan Balzarini and David K. Stammers
Molecular Pharmacology June 2006, 69 (6) 1891-1896; DOI: https://doi.org/10.1124/mol.106.023002
Kamel El Omari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sandra Liekens
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Louise E. Bird
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan Balzarini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David K. Stammers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Varicella zoster virus encodes a thymidine kinase responsible for the activation of antiherpetic nucleoside prodrugs such as acyclovir. In addition, herpes virus thymidine kinases are being explored in gene/chemotherapy strategies aimed at developing novel antitumor therapies. To investigate and improve compound selectivity, we report here structure-based site-directed mutagenesis studies of varicella zoster virus thymidine kinase (VZVTK). Earlier reports showed that mutating residues at the core of the VZVTK active site invariably destroyed activity; hence, we targeted more distal residues. Based on the VZVTK crystal structure, we constructed six mutants (E59S, R84V, H97Y/A, and Y21H/E) and tested substrate activity and competitive inhibition for several compound series. All VZVTK mutants tested retained significant phosphorylation activity with dThd as substrate, apart from Y21E (350-fold diminution in the kcat/Km). Some mutations give slightly improved affinities: bicyclic nucleoside analogs (BCNAs) with a p-alkyl-substituted phenyl group seem to require aromatic ring stacking interactions with residue 97 for optimal inhibitory effect. Mutation Y21E decreased the IC50 value for the BCNA 3-(2′-deoxy-β-d-ribofuranosyl)-6-octyl-2,3-dihydrofuro[2,3-d]pyrimidin-2-one (Cf1368) 4-fold, whereas mutation Y21H increased the IC50 value by more than 15-fold. These results suggest that residue 21 is important for BCNA selectivity and might explain why HSV1TK is unable to bind BCNAs. Other mutants, such as the E59S and R84V thymidine kinases, which in wild-type VZVTK stabilize the dimer interface, give opposite results regarding the level of sensitivity to BCNAs. The work described here shows that distal mutations that affect the VZVTK active-site may help in the design of more selective substrates for gene suicide therapy or as anti-varicella zoster virus drugs.

  • Received January 27, 2006.
  • Accepted March 22, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (6)
Molecular Pharmacology
Vol. 69, Issue 6
1 Jun 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mutations Distal to the Substrate Site Can Affect Varicella Zoster Virus Thymidine Kinase Activity: Implications for Drug Design
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Mutations Distal to the Substrate Site Can Affect Varicella Zoster Virus Thymidine Kinase Activity: Implications for Drug Design

Kamel El Omari, Sandra Liekens, Louise E. Bird, Jan Balzarini and David K. Stammers
Molecular Pharmacology June 1, 2006, 69 (6) 1891-1896; DOI: https://doi.org/10.1124/mol.106.023002

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Mutations Distal to the Substrate Site Can Affect Varicella Zoster Virus Thymidine Kinase Activity: Implications for Drug Design

Kamel El Omari, Sandra Liekens, Louise E. Bird, Jan Balzarini and David K. Stammers
Molecular Pharmacology June 1, 2006, 69 (6) 1891-1896; DOI: https://doi.org/10.1124/mol.106.023002
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Upacicalcet binds to the amino acid binding site of CaSR
  • Characterization of GRD and LCCH3 from Human Louse
  • Resveratrol Acts as an NR4A1 Antagonist in Lung Cancer
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics