Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

T-Type Calcium Channels Are Inhibited by Fluoxetine and Its Metabolite Norfluoxetine

Achraf Traboulsie, Jean Chemin, Elodie Kupfer, Joël Nargeot and Philippe Lory
Molecular Pharmacology June 2006, 69 (6) 1963-1968; DOI: https://doi.org/10.1124/mol.105.020842
Achraf Traboulsie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean Chemin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elodie Kupfer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joël Nargeot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philippe Lory
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Fluoxetine, a widely used antidepressant that primarily acts as a selective serotonin reuptake inhibitor, also inhibits various neuronal ion channels. Using the whole-cell patch-clamp technique, we have examined the effects of fluoxetine and norfluoxetine, its major active metabolite, on cloned low-voltage-activated T-type calcium channels (T channels) expressed in tsA 201 cells. Fluoxetine inhibited the three T channels CaV3.1, CaV3.2, and CaV3.3 in a concentration-dependent manner (IC50 = 14, 16, and 30 μM, respectively). Norfluoxetine was a more potent inhibitor than fluoxetine, especially on the CaV3.3 T current (IC50 = 5 μM). The fluoxetine block of T channels was voltage-dependent because it was significantly enhanced for T channels in the inactivated state. Fluoxetine caused a hyperpolarizing shift in steady-state inactivation, with a slower rate of recovery from the inactivated state. These results indicated a tighter binding of fluoxetine to the inactivated state than to the resting state of T channels, suggesting a more potent inhibition of T channels at physiological resting membrane potential. Indeed, fluoxetine and norfluoxetine at 1 μM strongly inhibited cloned T currents (∼50 and ∼75%, respectively) in action potential clamp experiments performed with firing activities of thalamocortical relay neurons. Altogether, these data demonstrate that clinically relevant concentrations of fluoxetine exert a voltage-dependent block of T channels that may contribute to this antidepressant's pharmacological effects.

  • Received November 15, 2005.
  • Accepted March 1, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (6)
Molecular Pharmacology
Vol. 69, Issue 6
1 Jun 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
T-Type Calcium Channels Are Inhibited by Fluoxetine and Its Metabolite Norfluoxetine
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

T-Type Calcium Channels Are Inhibited by Fluoxetine and Its Metabolite Norfluoxetine

Achraf Traboulsie, Jean Chemin, Elodie Kupfer, Joël Nargeot and Philippe Lory
Molecular Pharmacology June 1, 2006, 69 (6) 1963-1968; DOI: https://doi.org/10.1124/mol.105.020842

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

T-Type Calcium Channels Are Inhibited by Fluoxetine and Its Metabolite Norfluoxetine

Achraf Traboulsie, Jean Chemin, Elodie Kupfer, Joël Nargeot and Philippe Lory
Molecular Pharmacology June 1, 2006, 69 (6) 1963-1968; DOI: https://doi.org/10.1124/mol.105.020842
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Human mAb 3F1 targeting the fuctional epitopes of Siglec-15
  • The regulation and mechanisms of ImKTX58 on KV1.3 channel
  • EIPA, HMA and SMN2 gene regulation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics