Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Aryl Hydrocarbon Receptor Agonist 2,3,7,8-Tetrachlorodibenzo-p-dioxin Alters the Circadian Rhythms, Quiescence, and Expression of Clock Genes in Murine Hematopoietic Stem and Progenitor Cells

Russell W. Garrett and Thomas A. Gasiewicz
Molecular Pharmacology June 2006, 69 (6) 2076-2083; DOI: https://doi.org/10.1124/mol.105.021006
Russell W. Garrett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas A. Gasiewicz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) agonist, has been identified as a potent immunohematopoietic toxicant with the ability to alter the number of Lin- Sca-1+ cKit+ (LSK) bone marrow cells, a population enriched for murine hematopoietic stem cells. The biology of these cells is governed by circadian rhythms and TCDD has been shown to disrupt circadian rhythms of other biological endpoints. We investigated the effect of TCDD on the circadian rhythms of hematopoietic precursors. Female C57BL/6 mice were treated with a single oral dose of 10 μg/kg TCDD. Five days later, bone marrow was harvested every 4 h for 24 h and stained for specific hematopoietic populations using fluorescently labeled antibodies. In addition, cells were placed into semisolid culture to measure different functionally defined populations. Activation of the AhR by TCDD elicited disruptions in the rhythms of LSK cell numbers and phenotypically defined myeloid and erythroid precursors. Simultaneous DNA and RNA staining revealed an abnormal in vivo rhythm of percentage of total number of LSK cells in G0 phase of the cell cycle, suggesting disruption of stem cell quiescence. Finally, quantitative reverse transcription-polymerase chain reaction revealed that expression of AhR and Arnt mRNA within enriched hematopoietic precursors oscillates with a circadian period. Modest changes in the 24-h expression of mPer1 and mPer2 mRNA and increased AhR repressor mRNA after TCDD exposure suggest a direct effect on the molecular machinery responsible for these rhythms. Together, these data demonstrate that activation of the AhR by TCDD disrupts the circadian rhythms associated with murine hematopoietic precursors.

  • Received November 21, 2005.
  • Accepted March 23, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 69 (6)
Molecular Pharmacology
Vol. 69, Issue 6
1 Jun 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Aryl Hydrocarbon Receptor Agonist 2,3,7,8-Tetrachlorodibenzo-p-dioxin Alters the Circadian Rhythms, Quiescence, and Expression of Clock Genes in Murine Hematopoietic Stem and Progenitor Cells
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Aryl Hydrocarbon Receptor Agonist 2,3,7,8-Tetrachlorodibenzo-p-dioxin Alters the Circadian Rhythms, Quiescence, and Expression of Clock Genes in Murine Hematopoietic Stem and Progenitor Cells

Russell W. Garrett and Thomas A. Gasiewicz
Molecular Pharmacology June 1, 2006, 69 (6) 2076-2083; DOI: https://doi.org/10.1124/mol.105.021006

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Aryl Hydrocarbon Receptor Agonist 2,3,7,8-Tetrachlorodibenzo-p-dioxin Alters the Circadian Rhythms, Quiescence, and Expression of Clock Genes in Murine Hematopoietic Stem and Progenitor Cells

Russell W. Garrett and Thomas A. Gasiewicz
Molecular Pharmacology June 1, 2006, 69 (6) 2076-2083; DOI: https://doi.org/10.1124/mol.105.021006
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Human mAb 3F1 targeting the fuctional epitopes of Siglec-15
  • The regulation and mechanisms of ImKTX58 on KV1.3 channel
  • EIPA, HMA and SMN2 gene regulation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics