Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Thioxanthones

II. Studies on the Hydrogen-Bonding Capacity of Lucanthone

ROLF ZILVERSMIT
Molecular Pharmacology November 1971, 7 (6) 674-682;
ROLF ZILVERSMIT
Hematology Service, Mount Sinai Hospital Services, Elmhurst, New York 11373, and Department of Medicine, The Mount Sinai School of Medicine of The City University of New York, New York, New York 10029
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Lucanthone (1-diethylaminoethylamino-4-methylthioxanthone) is a bacteriostatic and carcinostatic agent, and combines readily with DNA. N11-Methyl substitution results in virtual deletion of these activities. It has been postulated that this effect is due to loss of the capacity to form in an intermolecular hydrogen bond.

Suitable investigations of electronic and vibrational spectra indicate the presence of a stable intramolecular amino-carbonyl proton bond in lucanthone. The studies reveal no evidence of interaction between strong hydrogen-bonding acids or bases and the carbonyl or secondary amine substituents.

Consequently, the reduced biological and biochemical activity concomitant with N-methyl substitution is not attributable to a diminished capacity to form intermolecular proton bonds. In fact, the capability of lucanthone in this regard is lower than that of the less active N-methyl derivative, in which the nonbonding 2p orbital of the carbonyl function is free to interact with hydrogen-bonding acids.

ACKNOWLEDGMENTS I thank Dr. I. B. Weinstein and Dr. E. Hirschberg for supplying lucanthone and its N-methyl derivative, and Mrs. E. Felten for preparing the illustrations.

  • Copyright ©, 1971, by Academic Press, Inc.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 7, Issue 6
1 Nov 1971
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Thioxanthones
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Thioxanthones

ROLF ZILVERSMIT
Molecular Pharmacology November 1, 1971, 7 (6) 674-682;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Thioxanthones

ROLF ZILVERSMIT
Molecular Pharmacology November 1, 1971, 7 (6) 674-682;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
  • Relapsed-Leukemia Model with NT5C2/PRPS1 Hotspot Mutations
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics