Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Sphingosine and Its Analog, the Immunosuppressant 2-Amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol, Interact with the CB1 Cannabinoid Receptor

Steven W. Paugh, Michael P. Cassidy, Hengjun He, Sheldon Milstien, Laura J. Sim-Selley, Sarah Spiegel and Dana E. Selley
Molecular Pharmacology July 2006, 70 (1) 41-50; DOI: https://doi.org/10.1124/mol.105.020552
Steven W. Paugh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael P. Cassidy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hengjun He
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sheldon Milstien
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laura J. Sim-Selley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarah Spiegel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dana E. Selley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Sphingosine-1-phosphate (S1P) and cannabinoid receptors are G-protein-coupled receptors that mediate the effects of S1P and endocannabinoids, respectively. Cannabinoid receptors also mediate the effects of Δ9-tetrahydrocannabinol, the primary psychoactive ingredient in marijuana, whereas S1P receptors contribute to the immunosuppressant effects of 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720). FTY720 is a sphingosine analog that can prevent renal graft rejections and suppress a variety of autoimmune disorders in animal models and clinical trials. We now report that both FTY720 and sphingosine interact with CB1 but not CB2 cannabinoid receptors. FTY720 and sphingosine inhibited the binding of the CB1-selective antagonist [3H]N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide ([3H]SR141716A) and the cannabinoid agonist [3H](–)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol ([3H]CP55,940) in a concentration-dependent manner in both CB1-expressing cell lines and mouse cerebellum. However, these compounds did not significantly alter [3H]CP55,940 binding to CB2 receptors. In G-protein activation assays, FTY720 and sphingosine inhibited the maximal stimulation of guanosine 5′-O-(3-[35S]thio)triphosphate binding by the cannabinoid agonist R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212-2) in a concentration-dependent manner, and this antagonist effect was not mimicked by S1P. FTY720 and sphingosine also inhibited activation of extracellular signal-regulated kinases 1 and 2 and Akt by WIN55,212-2 in intact Chinese hamster ovary (CHO) cells expressing CB1 receptors and attenuated WIN55,212-2-stimulated internalization of a fluorescence-tagged CB1 receptor in CHO cells. Moreover, both FTY720 and sphingosine produced rightward shifts in the concentration-effect curves of cannabinoid agonists for G-protein activation, indicating that they act as competitive CB1 antagonists. These results suggest that the CB1 receptor could be a novel target of FTY720 and that sphingosine could be an endogenous CB1 antagonist.

  • Received November 7, 2005.
  • Accepted March 28, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 70 (1)
Molecular Pharmacology
Vol. 70, Issue 1
1 Jul 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sphingosine and Its Analog, the Immunosuppressant 2-Amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol, Interact with the CB1 Cannabinoid Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Sphingosine and Its Analog, the Immunosuppressant 2-Amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol, Interact with the CB1 Cannabinoid Receptor

Steven W. Paugh, Michael P. Cassidy, Hengjun He, Sheldon Milstien, Laura J. Sim-Selley, Sarah Spiegel and Dana E. Selley
Molecular Pharmacology July 1, 2006, 70 (1) 41-50; DOI: https://doi.org/10.1124/mol.105.020552

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Sphingosine and Its Analog, the Immunosuppressant 2-Amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol, Interact with the CB1 Cannabinoid Receptor

Steven W. Paugh, Michael P. Cassidy, Hengjun He, Sheldon Milstien, Laura J. Sim-Selley, Sarah Spiegel and Dana E. Selley
Molecular Pharmacology July 1, 2006, 70 (1) 41-50; DOI: https://doi.org/10.1124/mol.105.020552
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics