Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Fluoxetine and Cocaine Induce the Epigenetic Factors MeCP2 and MBD1 in Adult Rat Brain

Suzanne Cassel, Delphine Carouge, Claire Gensburger, Patrick Anglard, Claude Burgun, Jean-Bernard Dietrich, Dominique Aunis and Jean Zwiller
Molecular Pharmacology August 2006, 70 (2) 487-492; DOI: https://doi.org/10.1124/mol.106.022301
Suzanne Cassel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Delphine Carouge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claire Gensburger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick Anglard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claude Burgun
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-Bernard Dietrich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dominique Aunis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean Zwiller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Once bound to methylated CpG sites, methyl-CpG-binding protein 2 (MeCP2) is thought to silence transcription of downstream genes by recruiting a histone deacetylase (HDAC). Mutations within the MeCP2 gene have been found to cause Rett syndrome, a disorder of arrested neuronal development. Using immunohistochemistry, we found that Mecp2, as well as the methyl-CpG-binding protein MBD1, were significantly induced in normal adult rat brain after repeated injections of fluoxetine or cocaine for 10 days (one injection per day). Mecp2 was not induced by repeated injections of 1-(2-bis(4-fluorphenyl)-methoxy)-ethyl)-4-(3-phenyl-propyl)piperazine (GBR-12909) or nortriptyline. Together, the data indicate that the serotonergic system is predominantly involved. Using real-time reverse transcription-polymerase chain reaction experiments, MBD1 mRNA and both Mecp2_e1 and Mecp2_e2 transcripts were found to be induced by fluoxetine. Induction of the methylbinding proteins was accompanied with enhanced HDAC2 labeling intensity and mRNA synthesis in response to fluoxetine. In tandem, acetylated forms of histone H3 were found to be decreased. The effect was characterized in three serotonin projection areas, the caudate-putamen, the frontal cortex, and the dentate gyrus subregion of hippocampus. Our data highlight GABAergic neurons as major target cells expressing Mecp2 in response to the serotonin-elevating agents and suggest that serotonin signaling enhances gene silencing in postmitotic neurons.

  • Received January 9, 2006.
  • Accepted May 2, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 70 (2)
Molecular Pharmacology
Vol. 70, Issue 2
1 Aug 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Fluoxetine and Cocaine Induce the Epigenetic Factors MeCP2 and MBD1 in Adult Rat Brain
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Fluoxetine and Cocaine Induce the Epigenetic Factors MeCP2 and MBD1 in Adult Rat Brain

Suzanne Cassel, Delphine Carouge, Claire Gensburger, Patrick Anglard, Claude Burgun, Jean-Bernard Dietrich, Dominique Aunis and Jean Zwiller
Molecular Pharmacology August 1, 2006, 70 (2) 487-492; DOI: https://doi.org/10.1124/mol.106.022301

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Fluoxetine and Cocaine Induce the Epigenetic Factors MeCP2 and MBD1 in Adult Rat Brain

Suzanne Cassel, Delphine Carouge, Claire Gensburger, Patrick Anglard, Claude Burgun, Jean-Bernard Dietrich, Dominique Aunis and Jean Zwiller
Molecular Pharmacology August 1, 2006, 70 (2) 487-492; DOI: https://doi.org/10.1124/mol.106.022301
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • P2X7 Positive Modulator Structure-Activity Relationship
  • Predicting Drug Interactions with ENT1 and ENT2
  • GABAAR Molecular Identity in Oligodendrocytes
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics