Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Aryl Hydrocarbon Receptor Activation Produces Heart-Specific Transcriptional and Toxic Responses in Developing Zebrafish

Sara A. Carney, Jing Chen, C. Geoffrey Burns, Kong M. Xiong, Richard E. Peterson and Warren Heideman
Molecular Pharmacology August 2006, 70 (2) 549-561; DOI: https://doi.org/10.1124/mol.106.025304
Sara A. Carney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jing Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Geoffrey Burns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kong M. Xiong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard E. Peterson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Warren Heideman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Proper regulation of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, is required for normal vertebrate cardiovascular development. AHR hyperactivation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during zebrafish (Danio rerio) development results in altered heart morphology and function, culminating in death. To identify genes that may cause cardiac toxicity, we analyzed the transcriptional response to TCDD in zebrafish hearts. Zebrafish larvae were exposed to TCDD for 1 h at 72 h after fertilization (hpf), and the hearts were extracted for microarray analysis at 1, 2, 4, and 12 h after exposure (73, 74, 76, and 84 h postfertilization). The remaining body tissue was also collected at each time for comparison. TCDD rapidly induced expression in 42 genes within 1 to2hof exposure. These genes function in xenobiotic metabolism, proliferation, heart contractility, and pathways that regulate heart development. Furthermore, these expression changes preceded signs of cardiovascular toxicity, characterized by decreased stroke volume, peripheral blood flow, and a halt in heart growth. This identifies strong candidates for important AHR target genes. It is noteworthy that the TCDD-induced transcriptional response in the hearts of zebrafish larvae was substantially different from that induced in the rest of the body tissues. One of the biggest differences included a cluster of genes that were down-regulated 12 h after exposure in heart tissue, but not in the body samples. More than 70% of the transcripts in this heart-specific cluster promote cellular growth and proliferation. Thus, the developing heart stands out as being responsive to TCDD at both the level of toxicity and gene expression.

  • Received April 5, 2006.
  • Accepted May 19, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 70 (2)
Molecular Pharmacology
Vol. 70, Issue 2
1 Aug 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Aryl Hydrocarbon Receptor Activation Produces Heart-Specific Transcriptional and Toxic Responses in Developing Zebrafish
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Aryl Hydrocarbon Receptor Activation Produces Heart-Specific Transcriptional and Toxic Responses in Developing Zebrafish

Sara A. Carney, Jing Chen, C. Geoffrey Burns, Kong M. Xiong, Richard E. Peterson and Warren Heideman
Molecular Pharmacology August 1, 2006, 70 (2) 549-561; DOI: https://doi.org/10.1124/mol.106.025304

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Aryl Hydrocarbon Receptor Activation Produces Heart-Specific Transcriptional and Toxic Responses in Developing Zebrafish

Sara A. Carney, Jing Chen, C. Geoffrey Burns, Kong M. Xiong, Richard E. Peterson and Warren Heideman
Molecular Pharmacology August 1, 2006, 70 (2) 549-561; DOI: https://doi.org/10.1124/mol.106.025304
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics