Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

A Novel Class of Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 1 Interact with a Site Distinct from That of Negative Allosteric Modulators

Kamondanai Hemstapat, Tomas de Paulis, Yelin Chen, Ashley E. Brady, Vandana K. Grover, David Alagille, Gilles D. Tamagnan and P. Jeffrey Conn
Molecular Pharmacology August 2006, 70 (2) 616-626; DOI: https://doi.org/10.1124/mol.105.021857
Kamondanai Hemstapat
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tomas de Paulis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yelin Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ashley E. Brady
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vandana K. Grover
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Alagille
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gilles D. Tamagnan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Jeffrey Conn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We recently reported a novel class of compounds, represented by 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CD-PPB), that act as positive allosteric modulators (potentiators) of metabotropic glutamate receptor (mGluR) subtype 5. Studies of CDPPB analogs revealed that some compounds in this series serve also as positive allosteric modulators of mGluR1. Although CDPPB is selective for mGluR5 relative to other mGluR subtypes, several CDPPB analogs also showed 2.5-fold potentiation of glutamate-induced calcium transients in cells expressing mGluR1 at 10 μM, with 4-nitro-N-(1,4-diphenyl-1H-pyrazol-5-yl)benzamide (VU-71) being selective for mGluR1. In previous studies, we found that two structural classes of mGluR5-selective allosteric potentiators, including CDPPB, share a common binding site with the allosteric mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine. Negative allosteric modulators of mGluR1, regardless of structural class, have been reported to bind to a common allosteric antagonist site on this receptor. However, neither the novel CDPPB analogs nor previously identified allosteric mGluR1 potentiators [e.g., (S)-2-(4-fluorophenyl)-1-(toluene-4-sulfonyl)pyrrolidine (Ro 67-7476), ethyl diphenylacetylcarbamate (Ro 01-6128), and butyl (9H-xanthene-9-carbonyl)carbamate (Ro 67-4853)] displaced the binding of [3H]1-(3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-2-phenyl-1-ethanone (R214127), a high-affinity radioligand for the allosteric antagonist site on mGluR1 at concentrations several orders of magnitude higher than those required to induce allosteric potentiation of mGluR1 responses. These data suggest that allosteric potentiators of mGluR1 act at a site that is distinct from that of allosteric antagonists of mGluR1. Site-directed mutagenesis revealed that valine at position 757 in transmembrane V of mGluR1a is crucial for the activity of multiple classes of allosteric mGluR1 potentiators.

  • Received December 19, 2005.
  • Accepted April 27, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 70 (2)
Molecular Pharmacology
Vol. 70, Issue 2
1 Aug 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Novel Class of Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 1 Interact with a Site Distinct from That of Negative Allosteric Modulators
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

A Novel Class of Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 1 Interact with a Site Distinct from That of Negative Allosteric Modulators

Kamondanai Hemstapat, Tomas de Paulis, Yelin Chen, Ashley E. Brady, Vandana K. Grover, David Alagille, Gilles D. Tamagnan and P. Jeffrey Conn
Molecular Pharmacology August 1, 2006, 70 (2) 616-626; DOI: https://doi.org/10.1124/mol.105.021857

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

A Novel Class of Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 1 Interact with a Site Distinct from That of Negative Allosteric Modulators

Kamondanai Hemstapat, Tomas de Paulis, Yelin Chen, Ashley E. Brady, Vandana K. Grover, David Alagille, Gilles D. Tamagnan and P. Jeffrey Conn
Molecular Pharmacology August 1, 2006, 70 (2) 616-626; DOI: https://doi.org/10.1124/mol.105.021857
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Relapsed-Leukemia Model with NT5C2/PRPS1 Hotspot Mutations
  • The Binding Site for KCI807 in the Androgen Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics