Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Mechanisms of Cardiolipin Oxidation by Cytochrome c: Relevance to Pro- and Antiapoptotic Functions of Etoposide

Yulia Y. Tyurina, Vidisha Kini, Vladimir A. Tyurin, Irina I. Vlasova, Jianfei Jiang, Alexander A. Kapralov, Natalia A. Belikova, Jack C. Yalowich, Igor V. Kurnikov and Valerian E. Kagan
Molecular Pharmacology August 2006, 70 (2) 706-717; DOI: https://doi.org/10.1124/mol.106.022731
Yulia Y. Tyurina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vidisha Kini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vladimir A. Tyurin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Irina I. Vlasova
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianfei Jiang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexander A. Kapralov
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Natalia A. Belikova
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jack C. Yalowich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Igor V. Kurnikov
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Valerian E. Kagan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Execution of apoptotic program in mitochondria is associated with accumulation of cardiolipin peroxidation products required for the release of proapoptotic factors into the cytosol. This suggests that lipid antioxidants capable of inhibiting cardiolipin peroxidation may act as antiapoptotic agents. Etoposide, a widely used antitumor drug and a topoisomerase II inhibitor, is a prototypical inducer of apoptosis and, at the same time, an effective lipid radical scavenger and lipid antioxidant. Here, we demonstrate that cardiolipin oxidation during apoptosis is realized not via a random cardiolipin peroxidation mechanism but rather proceeds as a result of peroxidase reaction in a tight cytochrome c/cardiolipin complex that restrains interactions of etoposide with radical intermediates generated in the course of the reaction. Using low-temperature and ambient-temperature electron paramagnetic resonance spectroscopy of H2O2-induced protein-derived (tyrosyl) radicals and etoposide phenoxyl radicals, respectively, we established that cardiolipin peroxidation and etoposide oxidation by cytochrome c/cardiolipin complex takes place predominantly on protein-derived radicals of cytochrome c. We further show that etoposide can inhibit cytochrome c-catalyzed oxidation of cardiolipin competing with it as a peroxidase substrate. Peroxidase reaction of cytochrome c/cardiolipin complexes causes cross-linking and oligomerization of cytochrome c. With nonoxidizable tetraoleoyl-cardiolipin, the cross-linking occurs via dityrosine formation, whereas bifunctional lipid oxidation products generated from tetralinoleoyl-cardiolipin participate in the production of high molecular weight protein aggregates. Protein aggregation is effectively inhibited by etoposide. The inhibition of cardiolipin peroxidation by etoposide, however, is realized at far higher concentrations than those at which it induces apoptotic cell death. Thus, oxidation of cardiolipin by the cytochrome c/cardiolipin peroxidase complex, which is essential for apoptosis, is not inhibited by proapoptotic concentrations of the drug.

  • Received January 18, 2006.
  • Accepted May 11, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 70 (2)
Molecular Pharmacology
Vol. 70, Issue 2
1 Aug 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanisms of Cardiolipin Oxidation by Cytochrome c: Relevance to Pro- and Antiapoptotic Functions of Etoposide
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Mechanisms of Cardiolipin Oxidation by Cytochrome c: Relevance to Pro- and Antiapoptotic Functions of Etoposide

Yulia Y. Tyurina, Vidisha Kini, Vladimir A. Tyurin, Irina I. Vlasova, Jianfei Jiang, Alexander A. Kapralov, Natalia A. Belikova, Jack C. Yalowich, Igor V. Kurnikov and Valerian E. Kagan
Molecular Pharmacology August 1, 2006, 70 (2) 706-717; DOI: https://doi.org/10.1124/mol.106.022731

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Mechanisms of Cardiolipin Oxidation by Cytochrome c: Relevance to Pro- and Antiapoptotic Functions of Etoposide

Yulia Y. Tyurina, Vidisha Kini, Vladimir A. Tyurin, Irina I. Vlasova, Jianfei Jiang, Alexander A. Kapralov, Natalia A. Belikova, Jack C. Yalowich, Igor V. Kurnikov and Valerian E. Kagan
Molecular Pharmacology August 1, 2006, 70 (2) 706-717; DOI: https://doi.org/10.1124/mol.106.022731
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Relapsed-Leukemia Model with NT5C2/PRPS1 Hotspot Mutations
  • The Binding Site for KCI807 in the Androgen Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics