Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Differential Roles of Phosphoinositide-Dependent Protein Kinase-1 and Akt1 Expression and Phosphorylation in Breast Cancer Cell Resistance to Paclitaxel, Doxorubicin, and Gemcitabine

Ke Liang, Yang Lu, Xinqun Li, Xiao Zeng, Robert I. Glazer, Gordon B. Mills and Zhen Fan
Molecular Pharmacology September 2006, 70 (3) 1045-1052; DOI: https://doi.org/10.1124/mol.106.023333
Ke Liang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yang Lu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xinqun Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiao Zeng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert I. Glazer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gordon B. Mills
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhen Fan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

3-Phosphoinositide-dependent protein kinase-1 (PDK1) and Akt1 are two closely related components of the phosphatidylinositol-3 kinase (PI3K) pathway, which is aberrantly regulated in breast cancer. Despite the importance of PDK1, few studies have evaluated it as a potential target for cancer therapy compared with studies of Akt1. We hypothesized that PDK1 is a superior target in the PI3K pathway. To test this, we first used a mouse mammary cell line retrovirally infected to express human PDK1 or Akt1 for comparative studies of treatment with paclitaxel, doxorubicin, and gemcitabine. Overexpression of PDK1 or Akt1 conferred similar resistance to treatment with paclitaxel or doxorubicin compared with control cells. However, the PDK1-overexpressing cells were more resistant to gemcitabine than were the Akt1-overexpressing cells. We next correlated the expression and activation-specific phosphorylation of PDK1 and Akt1 with the cytotoxic effects of the same agents in several human breast cancer cell lines. Cells with high levels of phosphorylated PDK1 were more resistant to gemcitabine-induced apoptosis than cells expressing high levels of phosphorylated Akt1. To further validate this observation, we used small interfering RNA oligonucleotides to selectively knock down PDK1 or Akt1 expression in MCF7 human breast cancer cells. We found that knockdown of PDK1 expression sensitized MCF7 cells to gemcitabine-induced apoptosis more effectively than did knockdown of Akt1 expression in the same cells. Our findings show that PDK1 may be a superior alternative to Akt1 as a target for sensitizing breast cancer cells to chemotherapeutic agents, particularly gemcitabine.

Footnotes

  • This work was supported in part by research grants from United States Department of Defense DMAD17-03-1-0617 (to Z.F.), 17-00-1-0461 (to Z.F.), and 17-99-9195 (to R.I.G.); the Breast Cancer Research Foundation (to Z.F.); National Institutes of Health grant CA81565 (to R.I.G.); an Eli Lilly and Co. and M. D. Anderson Cancer Center collaboration initiative grant (to Z.F.); and National Cancer Institute Comprehensive Cancer Center Support Grants to M. D. Anderson Cancer Center and Georgetown University.

  • ABBREVIATIONS: PI3K, phosphoinositide 3-kinase; PDK1, 3-phosphoinositide-dependent protein kinase-1; IGF-1, insulin-like growth factor-1; siRNA, small interfering RNA; PBS, phosphate-buffered saline; MAPK, mitogen-activated protein kinase; MTT, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide; GSK3, glycogen synthase kinase 3; ELISA, enzyme-linked immunosorbent assay; AGC, cAMP-dependent or cGMP-dependent protein kinases and protein kinase C; UCN-01, 7-hydroxystaurosporine; LY294002, 2-(4-morpholinyl)-8-phenyl-1(4H)-benzo-pyran-4-one hydrochloride.

    • Received February 8, 2006.
    • Accepted June 16, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 70 (3)
Molecular Pharmacology
Vol. 70, Issue 3
1 Sep 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential Roles of Phosphoinositide-Dependent Protein Kinase-1 and Akt1 Expression and Phosphorylation in Breast Cancer Cell Resistance to Paclitaxel, Doxorubicin, and Gemcitabine
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Differential Roles of Phosphoinositide-Dependent Protein Kinase-1 and Akt1 Expression and Phosphorylation in Breast Cancer Cell Resistance to Paclitaxel, Doxorubicin, and Gemcitabine

Ke Liang, Yang Lu, Xinqun Li, Xiao Zeng, Robert I. Glazer, Gordon B. Mills and Zhen Fan
Molecular Pharmacology September 1, 2006, 70 (3) 1045-1052; DOI: https://doi.org/10.1124/mol.106.023333

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Differential Roles of Phosphoinositide-Dependent Protein Kinase-1 and Akt1 Expression and Phosphorylation in Breast Cancer Cell Resistance to Paclitaxel, Doxorubicin, and Gemcitabine

Ke Liang, Yang Lu, Xinqun Li, Xiao Zeng, Robert I. Glazer, Gordon B. Mills and Zhen Fan
Molecular Pharmacology September 1, 2006, 70 (3) 1045-1052; DOI: https://doi.org/10.1124/mol.106.023333
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics