Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Risperidone Irreversibly Binds to and Inactivates the h5-HT7 Serotonin Receptor

Carol Smith, Tariq Rahman, Nicole Toohey, Joseph Mazurkiewicz, Katharine Herrick-Davis and Milt Teitler
Molecular Pharmacology October 2006, 70 (4) 1264-1270; DOI: https://doi.org/10.1124/mol.106.024612
Carol Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tariq Rahman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicole Toohey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph Mazurkiewicz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katharine Herrick-Davis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Milt Teitler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Risperidone displays a novel mechanism of antagonism of the h5-HT7 receptor. Pretreatment of the cells with 5 or 20 nM risperidone, followed by removal of the drug from the media, renders the 5-HT7 receptors unresponsive to 10 μM 5-HT for at least 24 h. Thus, risperidone seems to be producing a rapid, long-lasting inactivation of the h5-HT7 receptor. Whole-cell radioligand binding studies indicate that risperidone interacts in an irreversible or pseudo-irreversible manner with the h5-HT7 receptor, thus producing the inactivation. Internalization of the h5-HT7 receptor was not detected by monitoring green fluorescent protein-labeled fluorescent forms of the h5-HT7 receptor exposed to 20 nM risperidone. Ten other antagonists were tested for h5-HT7-inactivating properties, and only 9-OH-risperidone and methiothepin were found to demonstrate the same anomalous properties as risperidone. These results indicate that the h5-HT7 receptor may possess unique structural features that allow certain drugs to induce a conformation resulting in an irreversible interaction in the intact membrane environment. This may indicate that the h5-HT7 receptor is part of a subfamily of G-protein-coupled receptors (GPCRs) possessing this property or that many GPCRs have the potential to be irreversibly blocked, but only select drugs can induce this effect. At the very least, the possibility that highly prescribed drugs, such as risperidone, are irreversibly antagonizing GPCR function in vivo is noteworthy.

Footnotes

  • This work was supported by United States Public Health Service grants MH56650 and MH68547 (to M.T.).

  • ABBREVIATIONS: GPCR, G-protein-coupled receptor; PCR, polymerase chain reaction; GFP, green fluorescent protein; ANOVA, analysis of variance; 5-HT, 5-hydroxytryptamine; HEK, human embryonic kidney; Ro-20-1724, 4-[(3-butoxy-4-methoxyphenyl)-methyl]-2-imidazolidinone.

    • Received March 17, 2006.
    • Accepted July 26, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 70 (4)
Molecular Pharmacology
Vol. 70, Issue 4
1 Oct 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Risperidone Irreversibly Binds to and Inactivates the h5-HT7 Serotonin Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Risperidone Irreversibly Binds to and Inactivates the h5-HT7 Serotonin Receptor

Carol Smith, Tariq Rahman, Nicole Toohey, Joseph Mazurkiewicz, Katharine Herrick-Davis and Milt Teitler
Molecular Pharmacology October 1, 2006, 70 (4) 1264-1270; DOI: https://doi.org/10.1124/mol.106.024612

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Risperidone Irreversibly Binds to and Inactivates the h5-HT7 Serotonin Receptor

Carol Smith, Tariq Rahman, Nicole Toohey, Joseph Mazurkiewicz, Katharine Herrick-Davis and Milt Teitler
Molecular Pharmacology October 1, 2006, 70 (4) 1264-1270; DOI: https://doi.org/10.1124/mol.106.024612
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics