Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Endocrine Regulation of Gender-Divergent Mouse Organic Anion-Transporting Polypeptide (Oatp) Expression

Xingguo Cheng, Jonathan Maher, Hong Lu and Curtis D. Klaassen
Molecular Pharmacology October 2006, 70 (4) 1291-1297; DOI: https://doi.org/10.1124/mol.106.025122
Xingguo Cheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan Maher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hong Lu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Curtis D. Klaassen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

This article has a correction. Please see:

  • Correction to “Endocrine Regulation of Gender-Divergent Mouse Organic Anion-Transporting Polypeptide (Oatp) Expression” - April 01, 2008

Abstract

Several examples of gender-divergent pharmacokinetics exist in humans and experimental animals, and one reason for these variations may be gender differences in transporter expression. Organic anion transporting polypeptides (Oatp) are transporters involved in hepatic and renal uptake of many organic compounds. In mouse livers, Oatp1a1 is male-predominant, whereas Oatp1a4 is female-predominant. However, in kidneys, Oatp1a1 and Oatp3a1 are both female-predominant. The purpose of the present study was to determine whether sex hormones and/or growth hormone (GH) secretion patterns are responsible for the gender-specific Oatp expression in mice. Gonadectomized mice, GH-releasing hormone receptor-deficient little (lit/lit) mice, and hypophysectomized mice were used with replacement of sex hormones or GH in male or female secretion patterns. Androgens increased Oatp1a1 mRNA in liver and kidney, whereas male-pattern GH administration increased Oatp1a1 mRNA in livers but not in kidneys. Hepatic Oatp1a4 mRNA levels were decreased by both androgens and male-pattern GH administration. In kidneys, Oatp3a1 mRNA expression was only induced by androgen treatment. In conclusion, gender-divergent Oatp expression in liver is caused by male-pattern GH secretion pattern and androgens. In kidney, gender-divergent Oatp expression is exclusively caused by stimulation by androgens.

Footnotes

  • This work was supported by National Institutes of Health Grants ES09649 and ES07079.

  • ABBREVIATIONS: Oatp, organic anion transporting polypeptide(s); GH, growth hormone; HX, hypophysectomy; GHRH-R, growth hormone releasing hormone receptor; DHT, 5α-dihydrotestosterone; E2, 17β-estradiol; bDNA, branched DNA; RLU, relative light unit(s); CAR, constitutive androstane receptor; PXR, pregnane X receptor.

    • Received March 29, 2006.
    • Accepted June 28, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 70 (4)
Molecular Pharmacology
Vol. 70, Issue 4
1 Oct 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Endocrine Regulation of Gender-Divergent Mouse Organic Anion-Transporting Polypeptide (Oatp) Expression
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Endocrine Regulation of Gender-Divergent Mouse Organic Anion-Transporting Polypeptide (Oatp) Expression

Xingguo Cheng, Jonathan Maher, Hong Lu and Curtis D. Klaassen
Molecular Pharmacology October 1, 2006, 70 (4) 1291-1297; DOI: https://doi.org/10.1124/mol.106.025122

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Endocrine Regulation of Gender-Divergent Mouse Organic Anion-Transporting Polypeptide (Oatp) Expression

Xingguo Cheng, Jonathan Maher, Hong Lu and Curtis D. Klaassen
Molecular Pharmacology October 1, 2006, 70 (4) 1291-1297; DOI: https://doi.org/10.1124/mol.106.025122
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics