Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Regulation of Human Cone Cyclic Nucleotide-Gated Channels by Endogenous Phospholipids and Exogenously Applied Phosphatidylinositol 3,4,5-trisphosphate

Scott R. Bright, Elizabeth D. Rich and Michael D. Varnum
Molecular Pharmacology January 2007, 71 (1) 176-183; DOI: https://doi.org/10.1124/mol.106.026401
Scott R. Bright
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elizabeth D. Rich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael D. Varnum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cyclic nucleotide-gated (CNG) channels are critical components of the vertebrate visual transduction cascade involved in converting light-induced changes in intracellular cGMP concentrations into electrical signals that can be interpreted by the brain as visual information. To characterize regulatory mechanisms capable of altering the apparent ligand affinity of cone channels, we have expressed heteromeric (CNGA3 + CNGB3) human cone CNG channels in Xenopus laevis oocytes and characterized the alterations in channel activity that occur after patch excision using patch-clamp recording in the inside-out configuration. We found that cone channels exhibit spontaneous changes in current at subsaturating cGMP concentrations; these changes are enhanced by application of ATP and seem to reflect alterations in channel gating. Similar to rod CNG channels, lavendustin A prevented this regulation, suggesting the involvement of a tyrosine phosphorylation event. However, the tyrosine residue in CNGB3 (Tyr545) that is equivalent to the critical tyrosine residues in rod and olfactory CNG channel subunits does not participate in cone channel regulation. Furthermore, the changes in ligand sensitivity of CNGA3 + CNGB3 channels were prevented by inhibition of phosphatidylinositol 3-kinase (PI3-kinase) using wortmannin or 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), which suggests that phospholipid metabolism can regulate the channels. Direct application of phosphatidylinositol 3,4,5-trisphosphate (PIP3) to the intracellular face of excised patches also resulted in down-regulation of channel activity. Thus, phospholipid metabolism and exogenously applied PIP3 can modulate heterologously expressed cone CNG channels.

Footnotes

  • This work was supported by grants from the National Eye Institute (EY12836) (to M.D.V.) and from the Poncin Foundation (to S.R.B.).

  • ABBREVIATIONS: CNG, cyclic nucleotide-gated; CNBD, cyclic nucleotide binding domain; IGF-1, insulin-like growth factor-1; CaM, calmodulin; PI3, phosphatidylinositol 3; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-trisphosphate; ORN, olfactory receptor neuron; FVPP, sodium fluoride, sodium orthovanadate, and sodium pyrophosphate; LY294002, 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride.

    • Received May 8, 2006.
    • Accepted October 3, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 71 (1)
Molecular Pharmacology
Vol. 71, Issue 1
1 Jan 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of Human Cone Cyclic Nucleotide-Gated Channels by Endogenous Phospholipids and Exogenously Applied Phosphatidylinositol 3,4,5-trisphosphate
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Regulation of Human Cone Cyclic Nucleotide-Gated Channels by Endogenous Phospholipids and Exogenously Applied Phosphatidylinositol 3,4,5-trisphosphate

Scott R. Bright, Elizabeth D. Rich and Michael D. Varnum
Molecular Pharmacology January 1, 2007, 71 (1) 176-183; DOI: https://doi.org/10.1124/mol.106.026401

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Regulation of Human Cone Cyclic Nucleotide-Gated Channels by Endogenous Phospholipids and Exogenously Applied Phosphatidylinositol 3,4,5-trisphosphate

Scott R. Bright, Elizabeth D. Rich and Michael D. Varnum
Molecular Pharmacology January 1, 2007, 71 (1) 176-183; DOI: https://doi.org/10.1124/mol.106.026401
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • GABAAR Molecular Identity in Oligodendrocytes
  • Editing TOP2α Intron-19 5′ SS Circumvents Drug Resistance
  • SerpinA3N and drug induced liver injury
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics