Abstract
As a member of the transient receptor potential (TRP) ion channel superfamily, the ligand-gated ion channel TRPA1 has been implicated in nociceptive function and pain states. The endogenous ligands that activate TRPA1 remain unknown. However, various agonists have been identified, including environmental irritants (e.g., acrolein) and ingredients of pungent natural products [e.g., allyl isothiocyanate (ITC), cinnamaldehyde, allicin, and gingerol]. In general, these agents are either highly reactive, nonselective, or not potent or efficacious, significantly limiting their utilities in the study of TRPA1 channel properties and biological functions. In a search for novel TRPA1 agonists, we identified 3′-carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB597), a potent and systemically active inhibitor of fatty acid amide hydrolase (FAAH). This enzyme is responsible for anandamide degradation and therefore has been pursued as an antinociceptive and antiepileptic drug target. Using Ca2+ influx assays and patch-clamp techniques, we demonstrated that URB597 could activate heterologously expressed human and rat TRPA1 channels, whereas two other FAAH inhibitors (i.e., URB532 and Compound 7) had no effect. When applied to inside-out membrane patches expressing rat TRPA1, URB597 elicited single-channel activities with a unitary conductance of 40 pS. Furthermore, URB597 activated TRPA1 channels endogenously expressed in a population of rat dorsal root ganglion neurons that also responded to ITC. In contrast to its effect on TRPA1, URB597 inhibited TRPM8 and had no effects on TRPV1 or TRPV4. Thus, we conclude that URB597 is a novel agonist of TRPA1 and probably activates the channel through a direct gating mechanism.
Footnotes
-
Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.
-
doi:10.1124/mol.106.033621.
-
ABBREVIATIONS: TRP, transient receptor potential; DRG, dorsal root ganglion; ITC, allyl isothiocyanate; URB597, 3′-carbamoylbiphenyl-3-yl cyclohexylcarbamate; FAAH, fatty acid amide hydrolase; HEK, human embryonic kidney; NGF, nerve growth factor; FLIPR, fluorometric imaging plate reader; URB532, 4-(benzyloxy)phenyl butylcarbamate; compound 7, 1-(oxazolo[4,5-b]pyridin-2-yl)-6-phenylhexan-1-one; Po, open probability.
- Received December 19, 2006.
- Accepted February 15, 2007.
- The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|