Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Agonist-Driven Conformational Changes in the Inner β-Sheet of α7 Nicotinic Receptors

James T. McLaughlin, Jie Fu and Robert L. Rosenberg
Molecular Pharmacology May 2007, 71 (5) 1312-1318; DOI: https://doi.org/10.1124/mol.106.033092
James T. McLaughlin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jie Fu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert L. Rosenberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cys-loop ligand-gated ion channels assemble as pentameric proteins, and each monomer contributes two structural elements: an extracellular ligand-binding domain (LBD) and a transmembrane ion channel domain. Models of receptor activation include rotational movements of subunits leading to opening of the ion channel. We tested this idea using substituted cysteine accessibility to track conformational changes in the inner β sheet of the LBD. Using a nondesensitizing chick α7 background (L247T), we constructed 18 consecutive cysteine replacement mutants (Leu36 to Ile53) and tested each for expression of acetylcholine (ACh)-evoked currents and functional sensitivity to thiol modification. We measured rates of modification in the presence and absence of ACh to identify conformational changes associated with receptor activation. Resting modification rates of eight substituted cysteines in the β1 and β2 strands and the sequence between them (loop 2) varied over several orders of magnitude, suggesting substantial differences in the accessibility or electrostatic environment of individual side chains. These differences were in general agreement with structural models of the LBD. Eight of 18 cysteine replacements displayed ACh-dependent changes in modification rates, indicating a change in the accessibility or electrostatic environment of the introduced cysteine during activation. We were surprised that the effects of agonist exposure were difficult to reconcile with rotational models of activation. Acetylcholine reduced the modification rate of M40C but increased it at N52C despite the close physical proximity of these residues. Our results suggest that models that depend strictly on rigid-body rotation of the LBD may provide an incomplete description of receptor activation.

Footnotes

  • This work was funded by National Institute on Drug Abuse grant DA017882 (to R.L.R.).

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

  • doi:10.1124/mol.106.033092.

  • ABBREVIATIONS: 5-HT, 5-hydroxytryptamine; LBD, ligand binding domain; TMD, transmembrane ion channel domain; AChBP, acetylcholine binding protein; SCAM, substituted-cysteine accessibility method; MTSEA, methanethiosulfonate ethylammonium; AChR, acetylcholine receptor; ACh, acetylcholine; ESLC, extracellular solution containing a reduced Ca2+ concentration.

    • Received November 28, 2006.
    • Accepted February 23, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 71 (5)
Molecular Pharmacology
Vol. 71, Issue 5
1 May 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Agonist-Driven Conformational Changes in the Inner β-Sheet of α7 Nicotinic Receptors
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Agonist-Driven Conformational Changes in the Inner β-Sheet of α7 Nicotinic Receptors

James T. McLaughlin, Jie Fu and Robert L. Rosenberg
Molecular Pharmacology May 1, 2007, 71 (5) 1312-1318; DOI: https://doi.org/10.1124/mol.106.033092

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Agonist-Driven Conformational Changes in the Inner β-Sheet of α7 Nicotinic Receptors

James T. McLaughlin, Jie Fu and Robert L. Rosenberg
Molecular Pharmacology May 1, 2007, 71 (5) 1312-1318; DOI: https://doi.org/10.1124/mol.106.033092
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics