Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Low-Dose BBR3610 Toxicity in Colon Cancer Cells Is p53-Independent and Enhanced by Inhibition of Epidermal Growth Factor Receptor (ERBB1)-Phosphatidyl Inositol 3 Kinase Signaling

Clint Mitchell, Peyman Kabolizadeh, John Ryan, John D. Roberts, Adly Yacoub, David T. Curiel, Paul B. Fisher, Michael P. Hagan, Nicholas P. Farrell, Steven Grant and Paul Dent
Molecular Pharmacology September 2007, 72 (3) 704-714; DOI: https://doi.org/10.1124/mol.107.038406
Clint Mitchell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peyman Kabolizadeh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Ryan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John D. Roberts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adly Yacoub
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David T. Curiel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul B. Fisher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael P. Hagan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicholas P. Farrell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven Grant
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Dent
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have examined the mechanisms by which the multinuclear platinum chemotherapeutic BBR3610 kills human colon cancer cells. BBR3610 more efficiently killed HCT116, DLD1, SW480, and HT29 cells than BBR3464, cisplatin, or oxaliplatin. The amount of platinum uptake per cell and its incorporation into DNA were identical for BBR3464 and BBR3610. BBR3610 lethality (IC75) was unaltered comparing HCT116 wild-type and p53–/– cells, was reduced in p21–/– cells, and was enhanced in K-RAS D13 null cells. Small molecule or molecular inhibition of epidermal growth factor receptor (ERBB1) or phosphatidyl inositol 3 kinase (PI3K) enhanced BBR3610 toxicity in HCT116, DLD1, and SW480 cells. Small molecule or molecular inhibition of caspase 8 function abolished the toxicity of BBR3610 and of BBR3610 + ERBB1 inhibitor treatments, whereas inhibition of caspase 9 suppressed the ability of ERBB1 inhibitors to enhance BBR3610 lethality. Treatment with BBR3610 reduced AKT activity; the expression of dominant-negative AKT enhanced and expression of constitutively active AKT suppressed, respectively, the toxicity of BBR3610 and of BBR3610 + ERBB1 inhibitor treatments. Treatment with BBR3610 reduced expression of c-FLIP-s and MCL-1, levels that were maintained in cells expressing constitutively active AKT. Overexpression of c-FLIP-s or loss of BID function suppressed BBR3610 toxicity, whereas overexpression of XIAP or Bcl-xL suppressed the potentiation of cell killing by ERBB1 inhibitors. Collectively, our data argue that BBR3610 promotes cell killing via a caspase 8-dependent mechanism, which can be enhanced by ERBB1/PI3K inhibitors that promote additional BBR3610-dependent cell killing via activation of BAX and caspase 9.

Footnotes

  • P.D. is the holder of the Universal Inc. Professorship in Signal Transduction Research. These studies were funded by The Goodwin Foundation and P01 CA104177 Core B for virus production.

  • N.P.F. and S.G. contributed equally to direction of the studies.

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

  • doi:10.1124/mol.107.038406.

  • ABBREVIATIONS: ERK, extracellular signal-regulated kinase; MEK, mitogen-activated extracellular regulated kinase; PI3K, phosphatidyl inositol 3 kinase; –/–, null/gene deleted; MAPK, mitogen-activated protein kinase; PD184352, 2-(2-chloro-4-iodophenylamino)-N-cyclopropylmethoxy-3,4-difluorobenzamide; JNK, c-Jun NH2-terminal kinase; FAS, fatty acid synthase; FADD, fatty acid synthase-associating death domain protein; WT, wild type; BBR3464, (SP-4 –1)-diamminebis((SP-4 –2)-diamminechloroplatinum(π)(μ-hexane-1,6-diamine))platinum tetranitrate; ECL, enhanced chemiluminescence; DMSO, dimethyl sulfoxide; JNK-IP, c-Jun NH2-terminal kinase inhibitor peptide; ERBB1, epidermal growth factor receptor; HRP, horseradish peroxidase; PAGE, polyacrylamide gel electrophoresis; siRNA, small interfering RNA; MEF, mouse embryonic fibroblast; LY294002, 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride; AG1478, 4-(3′-chloroanilino)-6,7-dimethoxy-quinazoline; U0126, 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene; PD98059, 2′-amino-3′-methoxyflavone; ABT-737, (R)-4-(3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-{4-[4-(4′-chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoyl}-3-nitro-benzenesulfonamide; BMS-354825, N-(2-chloro-6-methylphenyl)-2-((6-(4-(2-hydroxyethyl)piperazin-1-yl)-2-methylpyrimidin-4-yl)amino)thiazole-5-carboxamide.

    • Received May 23, 2007.
    • Accepted June 18, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 72 (3)
Molecular Pharmacology
Vol. 72, Issue 3
1 Sep 2007
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Low-Dose BBR3610 Toxicity in Colon Cancer Cells Is p53-Independent and Enhanced by Inhibition of Epidermal Growth Factor Receptor (ERBB1)-Phosphatidyl Inositol 3 Kinase Signaling
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Low-Dose BBR3610 Toxicity in Colon Cancer Cells Is p53-Independent and Enhanced by Inhibition of Epidermal Growth Factor Receptor (ERBB1)-Phosphatidyl Inositol 3 Kinase Signaling

Clint Mitchell, Peyman Kabolizadeh, John Ryan, John D. Roberts, Adly Yacoub, David T. Curiel, Paul B. Fisher, Michael P. Hagan, Nicholas P. Farrell, Steven Grant and Paul Dent
Molecular Pharmacology September 1, 2007, 72 (3) 704-714; DOI: https://doi.org/10.1124/mol.107.038406

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Low-Dose BBR3610 Toxicity in Colon Cancer Cells Is p53-Independent and Enhanced by Inhibition of Epidermal Growth Factor Receptor (ERBB1)-Phosphatidyl Inositol 3 Kinase Signaling

Clint Mitchell, Peyman Kabolizadeh, John Ryan, John D. Roberts, Adly Yacoub, David T. Curiel, Paul B. Fisher, Michael P. Hagan, Nicholas P. Farrell, Steven Grant and Paul Dent
Molecular Pharmacology September 1, 2007, 72 (3) 704-714; DOI: https://doi.org/10.1124/mol.107.038406
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Action of Org 34167 on HCN channels
  • The effects of echinocystic acid on Kv7 channels
  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics