Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

p53 and ATM/ATR Regulate 7,12-Dimethylbenz[a]anthracene-Induced Immunosuppression

Jun Gao, Leah A. Mitchell, Fredine T. Lauer and Scott W. Burchiel
Molecular Pharmacology January 2008, 73 (1) 137-146; DOI: https://doi.org/10.1124/mol.107.039230
Jun Gao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leah A. Mitchell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fredine T. Lauer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott W. Burchiel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The tumor suppressor protein p53 is a transcription factor that regulates apoptotic responses produced by genotoxic agents. Previous studies have reported that 7,12-dimethylbenz[a]anthracene (DMBA)-induced bone marrow toxicity is p53-dependent in vivo. Our laboratory has shown that DMBA-induced splenic immunosuppression is CYP1B1- and microsomal epoxide hydrolase (mEH)-dependent, demonstrating that the DMBA-3,4-dihydrodiol-1,2-epoxide metabolite (DMBA-DE) is probably responsible for DMBA-induced immunosuppression. DMBA-DE is known to bind to DNA leading to strand breaks. Therefore, we postulated that a p53 pathway is required for DBMA-induced immunosuppression. In the present studies, our data show that activated p53 accumulated in the nuclei of spleen cells in WT and AhR-null mice after DMBA treatment, but not in CYP1B1-null or mEH-null mice. These results suggest that DMBA activates p53 in a CYP1B1- and mEH-dependent manner in vivo but is not AhR-dependent. Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein (ATR) are sensors for DNA damage that signal p53 activation. Increased ATM, phospho-ATM (Ser1987), and ATR levels were observed after DMBA treatment in WT, p53-null, and AhR-null mice but not in CYP1B1-null or mEH-null mice. Therefore, ATM and ATR seem to act upstream of p53 as sensors of DNA damage. Ex vivo immune function studies demonstrated that DMBA-induced splenic immunosuppression is p53-dependent at doses of DMBA that produce immunosuppression in the absence of cytotoxicity. High-dose DMBA cytotoxicity may be associated with p53-independent pathways. This study provides new insights into the requirement of genotoxicity for DMBA-induced immunosuppression in vivo and highlights the roles of ATM/ATR in signaling p53.

Footnotes

  • This work was supported by National Institutes of Health grant R01-ES05495, and the New Mexico Center for Environmental Health Sciences was supported by center grant P30-ES012072 from the National Institute of Environmental Health Sciences.

  • ABBREVIATIONS: PAH, polycyclic aromatic hydrocarbon; DMBA, 7,12-Dimethylbenz[a]anthracene; mEH, microsomal epoxide hydrolase; DMBA-DE, DMBA-3,4-dihydrodiol-1,2-epoxide; AhR, aryl hydrocarbon receptor; ATM, ataxia telangiectasia mutated; ATR, ATM and Rad3-related; Con A, Concanavalin A; LPS, lipopolysaccharide; WT, wild-type; CO, corn oil; TBS/T, Tris-buffered saline containing Tween 20; HRP, horseradish peroxidase; NK, natural killer cells; FITC, fluorescein isothiocyanate; APC, allophycocyanin; PE, phycoerythrin; PFC, plaque-forming cell; SRBC, sheep red blood cell.

    • Received June 22, 2007.
    • Accepted October 9, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 73 (1)
Molecular Pharmacology
Vol. 73, Issue 1
1 Jan 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
p53 and ATM/ATR Regulate 7,12-Dimethylbenz[a]anthracene-Induced Immunosuppression
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

p53 and ATM/ATR Regulate 7,12-Dimethylbenz[a]anthracene-Induced Immunosuppression

Jun Gao, Leah A. Mitchell, Fredine T. Lauer and Scott W. Burchiel
Molecular Pharmacology January 1, 2008, 73 (1) 137-146; DOI: https://doi.org/10.1124/mol.107.039230

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

p53 and ATM/ATR Regulate 7,12-Dimethylbenz[a]anthracene-Induced Immunosuppression

Jun Gao, Leah A. Mitchell, Fredine T. Lauer and Scott W. Burchiel
Molecular Pharmacology January 1, 2008, 73 (1) 137-146; DOI: https://doi.org/10.1124/mol.107.039230
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • 6-Methylflavone Blocks Bitterness of Tenofovir
  • Positive Allosteric Modulation of the mGlu5 Receptor
  • Correction of mutant CNGA3 channel trafficking defect
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics