Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

High-Affinity Cation Binding to Organic Cation Transporter 1 Induces Movement of Helix 11 and Blocks Transport after Mutations in a Modeled Interaction Domain between Two Helices

Dmitry Gorbunov, Valentin Gorboulev, Natalia Shatskaya, Thomas Mueller, Ernst Bamberg, Thomas Friedrich and Hermann Koepsell
Molecular Pharmacology January 2008, 73 (1) 50-61; DOI: https://doi.org/10.1124/mol.107.040170
Dmitry Gorbunov
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Valentin Gorboulev
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Natalia Shatskaya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Mueller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ernst Bamberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Friedrich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hermann Koepsell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Voltage-clamp fluorometry was performed with a cysteine-deprived mutant of rat organic cation transporter 1 (rOCT1) in which Phe483 in transmembrane α-helix (TMH) 11 close to the extracellular surface was replaced by cysteine and labeled with tetramethylrhodamine-6-maleimide. Potential-dependent fluorescence changes were observed that were sensitive to presence of substrates choline, tetraethylammonium (TEA), and 1-methyl-4-phenylpyridinium (MPP) and of the nontransported inhibitor tetrabutylammonium (TBuA). Using potential-dependent fluorescence changes as readout, one high-affinity binding site per substrate and two high-affinity binding sites for TBuA were identified in addition to the previously described single interaction sites. In a structure model of rOCT1 with an inward open cleft that was derived from a known crystal structure of lacY permease, Phe483 is close to Trp147 in TMH 2. In contrast, in a model with an outward open cleft these amino acids are far apart. After replacement of Phe483 or Trp147 by cysteine or serine, high-affinity binding of TBuA leads to inhibition of MPP or TEA uptake, whereas it has no effect on cation uptake by wild-type rOCT1. Coexisting high-affinity cation binding sites in organic cation transporters may collect low concentration xenobiotics and drugs; however, translocation including transitions between outward- and inward-oriented conformations may only be induced when a low-affinity cation binding site is loaded. We propose that cations bound to high-affinity sites may be translocated together with cations bound to low-affinity sites or that they may block the translocation mechanism.

Footnotes

  • This work was supported by the Deutsche Forschungsgemeinschaft grant SFB 487/A4 (to V.G. and H.K.) and the Max-Planck-Society for the Advancement of Sciences.

  • ABBREVIATIONS: OCT, organic cation transporter; OCTN, new organic cation transporter; TMH, transmembrane α-helix; r, rat; TBuA, tetrabutylammonium; TEA, tetraethylammonium; TMRM, tetramethylrhodamine-6-maleimide; MPP, 1-methyl-4-phenylpyridinium; Im, membrane current; Cm, membrane capacitance; ΔFψ, potential dependent fluorescence changes; I0.5, half-maximal current; r.m.s.d., root-mean-square deviation; MOPS, 3-(N-morpholino)propanesulfonic acid.

    • Received July 19, 2007.
    • Accepted October 16, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 73 (1)
Molecular Pharmacology
Vol. 73, Issue 1
1 Jan 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
High-Affinity Cation Binding to Organic Cation Transporter 1 Induces Movement of Helix 11 and Blocks Transport after Mutations in a Modeled Interaction Domain between Two Helices
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

High-Affinity Cation Binding to Organic Cation Transporter 1 Induces Movement of Helix 11 and Blocks Transport after Mutations in a Modeled Interaction Domain between Two Helices

Dmitry Gorbunov, Valentin Gorboulev, Natalia Shatskaya, Thomas Mueller, Ernst Bamberg, Thomas Friedrich and Hermann Koepsell
Molecular Pharmacology January 1, 2008, 73 (1) 50-61; DOI: https://doi.org/10.1124/mol.107.040170

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

High-Affinity Cation Binding to Organic Cation Transporter 1 Induces Movement of Helix 11 and Blocks Transport after Mutations in a Modeled Interaction Domain between Two Helices

Dmitry Gorbunov, Valentin Gorboulev, Natalia Shatskaya, Thomas Mueller, Ernst Bamberg, Thomas Friedrich and Hermann Koepsell
Molecular Pharmacology January 1, 2008, 73 (1) 50-61; DOI: https://doi.org/10.1124/mol.107.040170
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics