Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Anandamide Inhibition of 5-HT3A Receptors Varies with Receptor Density and Desensitization

Wei Xiong, Masako Hosoi, Bon-Nyeo Koo and Li Zhang
Molecular Pharmacology February 2008, 73 (2) 314-322; DOI: https://doi.org/10.1124/mol.107.039149
Wei Xiong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masako Hosoi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bon-Nyeo Koo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Li Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Converging evidence has suggested that anandamide (AEA), an endogenous agonist of cannabinoid (CB) receptors, can directly interact with certain types of ligand-gated ion channels (LGICs). However, little is known about the molecular and cellular mechanisms of AEA-induced direct effects on LGICs. Here, we report that AEA inhibited the function of serotoningated ion channels (5-HT3A) expressed in Xenopus laevis oocytes and human embryonic kidney 293 cells in a manner that was dependent on the steady-state receptor density at the cell surface. The magnitude of AEA inhibition was inversely correlated with the expression levels of receptor protein and function. With increasing surface receptor expression, the magnitude of AEA inhibition decreased. Consistent with this idea, pretreatment with actinomycin D, which inhibits transcription, decreased the amplitude of current activated by maximal concentrations of 5-hydroxytryptamine (5-HT) and increased the magnitude of AEA inhibition. AEA did not significantly alter 5-HT3A receptor trafficking. However, AEA accelerated 5-HT3A receptor desensitization time in a concentration-dependent manner without significantly changing receptor activation and deactivation time. The desensitization time was correlated with the AEA-induced inhibiting effect and mean 5-HT current density. Applications of 5-hydroxyindole and nocodazole, a microtubule disruptor, significantly slowed 5-HT3A receptor desensitization and reduced the magnitude of AEA inhibition. These observations suggest that 5-HT3 receptor density at the steady state regulates receptor desensitization kinetics and the potency of AEA-induced inhibiting effect on the receptors. The inhibition of 5-HT3 receptors by AEA may contribute to its physiological roles in control of pain and emesis.

Footnotes

  • This work was supported by funds from the intramural program of National Institute on Alcohol Abuse and Alcoholism.

  • ABBREVIATIONS: AEA, anandamide; CB1, cannabinoid type 1; LGIC, ligand-gated ion channel; 5-HT, 5-hydroxytryptamine; nACh, nicotinic acetylcholine; NG, nodose ganglion; PBS, phosphate-buffered saline; HEK, human embryonic kidney; ANOVA, analysis of variance; 5-HTID, 5-hydroxyindole; NOC, nocodazole; DMSO, dimethyl sulfoxide; AcD, Actinomycin D; MCD, mean current density; BTX, α-bungarotoxin pharmatope; BSA, bovine serum albumin; GR65630, 3-(5-methyl-1H-imidazol-4-yl)-1-(1-methylindol-3-yl)propan-1-one; OCB, open channel blocker.

    • Received June 19, 2007.
    • Accepted November 1, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 73 (2)
Molecular Pharmacology
Vol. 73, Issue 2
1 Feb 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Anandamide Inhibition of 5-HT3A Receptors Varies with Receptor Density and Desensitization
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Anandamide Inhibition of 5-HT3A Receptors Varies with Receptor Density and Desensitization

Wei Xiong, Masako Hosoi, Bon-Nyeo Koo and Li Zhang
Molecular Pharmacology February 1, 2008, 73 (2) 314-322; DOI: https://doi.org/10.1124/mol.107.039149

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Anandamide Inhibition of 5-HT3A Receptors Varies with Receptor Density and Desensitization

Wei Xiong, Masako Hosoi, Bon-Nyeo Koo and Li Zhang
Molecular Pharmacology February 1, 2008, 73 (2) 314-322; DOI: https://doi.org/10.1124/mol.107.039149
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics