Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Abrogation of Hyperosmotic Impairment of Insulin Signaling by a Novel Class of 1,2-Dithiole-3-thiones through the Inhibition of S6K1 Activation

Eun Ju Bae, Yoon Mee Yang and Sang Geon Kim
Molecular Pharmacology May 2008, 73 (5) 1502-1512; DOI: https://doi.org/10.1124/mol.107.044347
Eun Ju Bae
From Innovative Drug Research Center for Metabolic and Inflammatory Diseases, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yoon Mee Yang
From Innovative Drug Research Center for Metabolic and Inflammatory Diseases, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sang Geon Kim
From Innovative Drug Research Center for Metabolic and Inflammatory Diseases, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A previous study from this laboratory showed that oltipraz and synthetic dithiolethiones prevent tumor necrosis factor-α-induced hepatic insulin resistance via AMP-activated protein kinase-dependent p70S6 kinase (S6K) 1 inhibitory pathway. This study investigated whether oltipraz and a novel class of 1,2-dithiole-3-thiones were capable of preventing insulin resistance induced by hyperosmotic stress, thereby enhancing insulin-dependent signals, and, if so, whether the restoration of insulin signal was mediated with the inhibition of S6K1 activity stimulated by hyperosmotic stress. In HepG2 cells, oltipraz treatment inhibited insulin receptor substrate (IRS) 1 serine phosphorylation, a marker of insulin resistance, induced by sorbitol-, mannitol-, or sodium chloride-induced hyperosmotic stress. Consequently, this allowed cells to restore insulin signals, which was evidenced by decrease in the ratio of serine to tyrosine phosphorylations of IRS1 and increase in the phosphorylations of Akt and glycogen synthase kinase (GSK) 3β. Hyperosmotic stress markedly activated S6K1; S6K1 activation was completely abolished by oltipraz pretreatment. An experiment using dominant-negative S6K1 supports the essential role of S6K1 in the hyperosmolarity-stimulated phosphorylation of IRS1. Transfection of constitutive active mutant S6K1 eliminated the protective effect of oltipraz on GSK3β phosphorylation, indicating that oltipraz restores insulin signaling by inhibiting S6K1 activation. A variety of synthetic 1,2-dithiole-3-thione derivatives also inhibited S6K1 activity and insulin resistance induced by hyperosmotic stress in HepG2 cells. The results of this study demonstrate that a novel class of 1,2-dithiole-3-thiones improve insulin sensitivity under the condition of hyperosmotic stress, which results from the inhibition of S6K1 activation.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 73 (5)
Molecular Pharmacology
Vol. 73, Issue 5
1 May 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abrogation of Hyperosmotic Impairment of Insulin Signaling by a Novel Class of 1,2-Dithiole-3-thiones through the Inhibition of S6K1 Activation
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Abrogation of Hyperosmotic Impairment of Insulin Signaling by a Novel Class of 1,2-Dithiole-3-thiones through the Inhibition of S6K1 Activation

Eun Ju Bae, Yoon Mee Yang and Sang Geon Kim
Molecular Pharmacology May 1, 2008, 73 (5) 1502-1512; DOI: https://doi.org/10.1124/mol.107.044347

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Abrogation of Hyperosmotic Impairment of Insulin Signaling by a Novel Class of 1,2-Dithiole-3-thiones through the Inhibition of S6K1 Activation

Eun Ju Bae, Yoon Mee Yang and Sang Geon Kim
Molecular Pharmacology May 1, 2008, 73 (5) 1502-1512; DOI: https://doi.org/10.1124/mol.107.044347
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics