Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Identification of the Xenobiotic-Metabolizing Enzyme Arylamine N-Acetyltransferase 1 as a New Target of Cisplatin in Breast Cancer Cells: Molecular and Cellular Mechanisms of Inhibition

Nilusha Ragunathan, Julien Dairou, Benjamin Pluvinage, Marta Martins, Emile Petit, Nathalie Janel, Jean-Marie Dupret and Fernando Rodrigues-Lima
Molecular Pharmacology June 2008, 73 (6) 1761-1768; DOI: https://doi.org/10.1124/mol.108.045328
Nilusha Ragunathan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julien Dairou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benjamin Pluvinage
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marta Martins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emile Petit
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathalie Janel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-Marie Dupret
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fernando Rodrigues-Lima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic-metabolizing enzyme that plays an important role in the biotransformation of aromatic drugs and carcinogens. NAT1 activity has long been associated with susceptibility to various cancers. Evidence for a role of NAT1 in malignant progression has also been obtained, particularly for breast and prostate cancer. Cisplatin is widely used in chemotherapy against human cancers, and it is thought to act principally by forming DNA adducts. However, recent studies have suggested that some of the pharmacological and/or toxicological effects of cisplatin may be due to the direct targeting and inhibition of certain cellular enzymes. We show here that the exposure of breast cancer cells, known to express functional NAT1 enzyme, to therapeutically relevant concentrations of cisplatin impairs the catalytic activity of endogenous NAT1. Endogenous NAT1 was also found to be inactivated, in vivo, in the tissues of mice treated with cisplatin. Mechanistic studies with purified human NAT1 indicated that this inhibition resulted from the irreversible formation of a cisplatin adduct with the active-site cysteine residue of the enzyme. Kinetic studies suggested that NAT1 interacts rapidly with cisplatin, with a second-order rate inhibition constant of 700 M-1 min-1. This rate constant is one the highest ever reported for the reaction of cisplatin with a biological macromolecule. Few enzymes have been clearly shown to be inactivated by cisplatin. We provide here molecular and cellular evidence suggesting that NAT1 is one of the targets of cisplatin in cells.

Footnotes

  • This work was supported by Association pour la Recherche sur le Cancer, Association Française contre les Myopathies, la Chancellerie des Universités de Paris (Leg Poix) and la Caisse d'Assurance Maladies des Professions Libé-rales de Province. J.-M.D. and F.R.-L. contributed equally to this work.

  • ABBREVIATIONS: XME, xenobiotic-metabolizing enzyme; NAT, arylamine N-acetyltransferase; Ac, acetyl; DTT, 1,4-dithiothreitol; GSH, reduced glutathione; PBS, phosphate-buffered saline; PAGE, polyacrylamide gel electrophoresis; DMAB, 4-dimethylaminobenzaldehyde; TBS, Tris-buffered saline/Tween 20.

    • Received January 14, 2008.
    • Accepted February 29, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 73 (6)
Molecular Pharmacology
Vol. 73, Issue 6
1 Jun 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification of the Xenobiotic-Metabolizing Enzyme Arylamine N-Acetyltransferase 1 as a New Target of Cisplatin in Breast Cancer Cells: Molecular and Cellular Mechanisms of Inhibition
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Identification of the Xenobiotic-Metabolizing Enzyme Arylamine N-Acetyltransferase 1 as a New Target of Cisplatin in Breast Cancer Cells: Molecular and Cellular Mechanisms of Inhibition

Nilusha Ragunathan, Julien Dairou, Benjamin Pluvinage, Marta Martins, Emile Petit, Nathalie Janel, Jean-Marie Dupret and Fernando Rodrigues-Lima
Molecular Pharmacology June 1, 2008, 73 (6) 1761-1768; DOI: https://doi.org/10.1124/mol.108.045328

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Identification of the Xenobiotic-Metabolizing Enzyme Arylamine N-Acetyltransferase 1 as a New Target of Cisplatin in Breast Cancer Cells: Molecular and Cellular Mechanisms of Inhibition

Nilusha Ragunathan, Julien Dairou, Benjamin Pluvinage, Marta Martins, Emile Petit, Nathalie Janel, Jean-Marie Dupret and Fernando Rodrigues-Lima
Molecular Pharmacology June 1, 2008, 73 (6) 1761-1768; DOI: https://doi.org/10.1124/mol.108.045328
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • EIPA, HMA and SMN2 gene regulation
  • Clc-2 has minor role in intestinal Cl- secretion
  • Resveratrol acts as an NR4A1 antagonist in lung cancer.
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics