Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

(2R)-[(4-Biphenylylsulfonyl)amino]-N-hydroxy-3-phenylpropionamide (BiPS), a Matrix Metalloprotease Inhibitor, Is a Novel and Potent Activator of Hypoxia-Inducible Factors

Marie-Claude Lauzier, Geneviève A. Robitaille, Denise A. Chan, Amato J. Giaccia and Darren E. Richard
Molecular Pharmacology July 2008, 74 (1) 282-288; DOI: https://doi.org/10.1124/mol.108.045690
Marie-Claude Lauzier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Geneviève A. Robitaille
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Denise A. Chan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amato J. Giaccia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Darren E. Richard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Hypoxia-inducible factors (HIFs) are unstable heterodimeric transcription factors and decisive elements for the transcriptional regulation of genes important in the adaptation to low-oxygen conditions. Hypoxia is the ubiquitous inducer of HIFs, stabilizing the α-subunit and permitting the formation of a functional HIF complex. Here, we identify (2R)-[(4-biphenylylsulfonyl)amino]-N-hydroxy-3-phenylpropionamide (BiPS), a commercially available metalloprotease-2 and -9 inhibitor, as a rapid and potent inducer of HIFs. We show that in different cell lines, BiPS induces the HIF-α subunit by inhibiting its degradation through stabilization of its labile oxygen-dependent degradation domain. This is achieved through the inhibition of HIF-1α hydroxylation. The HIF-1 complex, formed after BiPS treatment, is capable of DNA binding and activation of HIF target genes, including the expression of vascular endothelial growth factor. Because novel HIF activators have generated considerable interest in the possible treatment of different ischemic diseases, we believe that BiPS and derivative molecules could have strong therapeutic potential.

Footnotes

  • This work was supported by grants from the Canadian Institutes of Health Research (CIHR, MOP-49609) and the Heart and Stroke Foundations of Québec and Canada. D.E.R. is a recipient of a CIHR New Investigator Award. M.C.L. is a recipient of a Graduate Scholarship from the CIHR.

  • ABBREVIATIONS: HIF, hypoxia-inducible factor; PHD, hypoxia-inducible factor prolyl hydroxylase; ODDD, oxygen-dependent degradation domain; pVHL, von Hippel Lindau protein; MMP, matrix metalloprotease; BAEC, bovine aortic endothelial cell; VSMC, vascular smooth muscle cell; 2-OG, 2-oxoglutarate; BiPS, (2R)-[(4-biphenylylsulfonyl)amino]-N-hydroxy-3-phenylpropionamide; MG132, N-benzoyloxycarbonyl (Z)-Leu-Leuleucinal; DMEM, Dulbecco's modified Eagle's medium; FBS, fetal bovine serum; siRNA, small interfering RNA; NETN buffer, NaCl, EDTA, Tris, Igepal, and deferoxamine; HA, hemagglutinin; HRE, hypoxia response element; PAGE, polyacrylamide gel electrophoresis; MAPK, mitogen-activated protein kinase; DMSO, dimethyl sulfoxide; GM6001, galardin.

    • Received January 25, 2008.
    • Accepted April 16, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 74 (1)
Molecular Pharmacology
Vol. 74, Issue 1
1 Jul 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
(2R)-[(4-Biphenylylsulfonyl)amino]-N-hydroxy-3-phenylpropionamide (BiPS), a Matrix Metalloprotease Inhibitor, Is a Novel and Potent Activator of Hypoxia-Inducible Factors
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

(2R)-[(4-Biphenylylsulfonyl)amino]-N-hydroxy-3-phenylpropionamide (BiPS), a Matrix Metalloprotease Inhibitor, Is a Novel and Potent Activator of Hypoxia-Inducible Factors

Marie-Claude Lauzier, Geneviève A. Robitaille, Denise A. Chan, Amato J. Giaccia and Darren E. Richard
Molecular Pharmacology July 1, 2008, 74 (1) 282-288; DOI: https://doi.org/10.1124/mol.108.045690

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

(2R)-[(4-Biphenylylsulfonyl)amino]-N-hydroxy-3-phenylpropionamide (BiPS), a Matrix Metalloprotease Inhibitor, Is a Novel and Potent Activator of Hypoxia-Inducible Factors

Marie-Claude Lauzier, Geneviève A. Robitaille, Denise A. Chan, Amato J. Giaccia and Darren E. Richard
Molecular Pharmacology July 1, 2008, 74 (1) 282-288; DOI: https://doi.org/10.1124/mol.108.045690
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Nelfinavir and PXR
  • P2X7 Positive Modulator Structure-Activity Relationship
  • Predicting Drug Interactions with ENT1 and ENT2
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics