Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

M3 Muscarinic Acetylcholine Receptor-Mediated Signaling Is Regulated by Distinct Mechanisms

Jiansong Luo, John M. Busillo and Jeffrey L. Benovic
Molecular Pharmacology August 2008, 74 (2) 338-347; DOI: https://doi.org/10.1124/mol.107.044750
Jiansong Luo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John M. Busillo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey L. Benovic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have used RNA interference previously to demonstrate that G protein-coupled receptor kinase 2 (GRK2) regulates endogenously expressed H1 histamine receptor in human embryonic kidney 293 cells. In this report, we investigate the regulation of endogenously expressed M3 muscarinic acetylcholine receptor (M3 mAChR). We show that knockdown of GRK2, GRK3, or GRK6, but not GRK5, significantly increased carbachol-mediated calcium mobilization. Stable expression of wild-type GRK2 or a kinase-dead mutant (GRK2-K220R) reduced calcium mobilization after receptor activation, whereas GRK2 mutants defective in Gαq binding (GRK2-D110A, GRK2-R106A, and GRK2-R106A/K220R) had no effect on calcium signaling, suggesting that GRK2 primarily regulates Gq after M3 mAChR activation. The knockdown of arrestin-2 or arrestin-3 also significantly increased carbachol-mediated calcium mobilization. Knockdown of GRK2 and the arrestins also significantly enhanced carbachol-mediated activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), whereas prolonged ERK1/2 activation was only observed with GRK2 or arrestin-3 knockdown. We also investigated the role of casein kinase-1α (CK1α) and found that knockdown of CK1α increased calcium mobilization but not ERK activation. In summary, our data suggest that multiple proteins dynamically regulate M3 mAChR-mediated calcium signaling, whereas GRK2 and arrestin-3 play the primary role in regulating ERK activation.

Footnotes

  • This work was supported by National Institutes of Health grants GM44944 and GM47417 (to J.L.B). J.M.B. is supported by a predoctoral fellowship from the American Heart Association.

  • J.L. and J.M.B. contributed equally to this work.

  • ABBREVIATIONS: GPCR, G protein-coupled receptor; Bis I, bisindolymaleimide I; CK1α, casein kinase 1-α; DAG, diacylglycerol; ERK, extracellular signal-regulated kinase; GRK, G protein-coupled receptor kinase; IP3, inositol trisphosphate; M3 mAChR, muscarinic acetylcholine receptor subtype 3; PKC, protein kinase C; PLC-β, phospholipase C-β; HEK, human embryonic kidney; siRNA, small interfering RNA; AM, acetoxymethyl ester; McN-A-343, 4-(m-chlorophenylcarbamoyloxy)-2-butynyltrimethylammonium; PMA, phorbol 12-myristate 13-acetate; PAGE, polyacrylamide gel electrophoresis; MEK, mitogen-activated protein kinase kinase.

    • Received December 31, 2007.
    • Accepted April 2, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 74 (2)
Molecular Pharmacology
Vol. 74, Issue 2
1 Aug 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
M3 Muscarinic Acetylcholine Receptor-Mediated Signaling Is Regulated by Distinct Mechanisms
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

M3 Muscarinic Acetylcholine Receptor-Mediated Signaling Is Regulated by Distinct Mechanisms

Jiansong Luo, John M. Busillo and Jeffrey L. Benovic
Molecular Pharmacology August 1, 2008, 74 (2) 338-347; DOI: https://doi.org/10.1124/mol.107.044750

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

M3 Muscarinic Acetylcholine Receptor-Mediated Signaling Is Regulated by Distinct Mechanisms

Jiansong Luo, John M. Busillo and Jeffrey L. Benovic
Molecular Pharmacology August 1, 2008, 74 (2) 338-347; DOI: https://doi.org/10.1124/mol.107.044750
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Positive Allosteric Modulation of the mGlu5 Receptor
  • 6-Methylflavone Blocks Bitterness of Tenofovir
  • Correction of mutant CNGA3 channel trafficking defect
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics