Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Caffeine Stimulates Cytochrome Oxidase Expression and Activity in the Striatum in a Sexually Dimorphic Manner

Frederick S. Jones, Jie Jing, Anthony H. Stonehouse, Anthony Stevens and Gerald M. Edelman
Molecular Pharmacology September 2008, 74 (3) 673-684; DOI: https://doi.org/10.1124/mol.108.046888
Frederick S. Jones
The Neurosciences Institute, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jie Jing
The Neurosciences Institute, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anthony H. Stonehouse
The Neurosciences Institute, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anthony Stevens
The Neurosciences Institute, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerald M. Edelman
The Neurosciences Institute, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Epidemiological studies indicate that caffeine consumption reduces the risk of Parkinson's disease (PD) in men, and antagonists of the adenosine 2A receptor ameliorate the motor symptoms of PD. These findings motivated us to identify proteins whose expression is regulated by caffeine in a sexually dimorphic manner. Using mass spectroscopy, we found that Cox7c, a nuclear-encoded subunit of the mitochondrial enzyme cytochrome oxidase, is up-regulated in the striatum of male but not female mice after receiving a single dose of caffeine. The expression of two other Cox subunits, Cox1 and Cox4, was also stimulated by caffeine in a male-specific fashion. This up-regulation of Cox subunits by caffeine was accompanied by an increase in Cox enzyme activity in the male striatum. Caffeine-induced stimulation of Cox expression and activity were reproduced using the adenosine 2A receptor (A2AR)-specific antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-ϵ]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261), and coadministration of the A2AR-specific agonist 2-[p-(2-carboxyethyl)phenethylamino]-5′-N-ethylcarboxamidoadenosine (CGS21680) counteracted the elevation of Cox expression and activity by caffeine. Caffeine also increased Cox activity in PC-12 cells. In contrast, small interfering RNA (siRNA) knockdown of Cox7c expression in PC-12 cells blunted Cox activity, and this was counteracted by caffeine treatment. Caffeine was also found to increase Cox7c mRNA expression in the striatum and in PC-12 cells. This occurred at the level of transcription and was mediated by a segment of the Cox7c promoter. Overall, these findings indicate that cytochrome oxidase is a metabolic target of caffeine and that stimulation of Cox activity by caffeine via blockade of A2AR signaling may be an important mechanism underlying the therapeutic benefits of caffeine in PD.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 74 (3)
Molecular Pharmacology
Vol. 74, Issue 3
1 Sep 2008
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Caffeine Stimulates Cytochrome Oxidase Expression and Activity in the Striatum in a Sexually Dimorphic Manner
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Caffeine Stimulates Cytochrome Oxidase Expression and Activity in the Striatum in a Sexually Dimorphic Manner

Frederick S. Jones, Jie Jing, Anthony H. Stonehouse, Anthony Stevens and Gerald M. Edelman
Molecular Pharmacology September 1, 2008, 74 (3) 673-684; DOI: https://doi.org/10.1124/mol.108.046888

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Caffeine Stimulates Cytochrome Oxidase Expression and Activity in the Striatum in a Sexually Dimorphic Manner

Frederick S. Jones, Jie Jing, Anthony H. Stonehouse, Anthony Stevens and Gerald M. Edelman
Molecular Pharmacology September 1, 2008, 74 (3) 673-684; DOI: https://doi.org/10.1124/mol.108.046888
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Allosteric Modulation of NMDA Receptor Conductance
  • 6-Methylflavone Blocks Bitterness of Tenofovir
  • Positive Allosteric Modulation of the mGlu5 Receptor
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics