Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Selective Inhibition of Mitogen-Activated Protein Kinase Phosphatases by Zinc Accounts for Extracellular Signal-Regulated Kinase 1/2-Dependent Oxidative Neuronal Cell Death

Yeung Ho, Ranmal Samarasinghe, Megan E. Knoch, Marcia Lewis, Elias Aizenman and Donald B. DeFranco
Molecular Pharmacology October 2008, 74 (4) 1141-1151; DOI: https://doi.org/10.1124/mol.108.049064
Yeung Ho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ranmal Samarasinghe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Megan E. Knoch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marcia Lewis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elias Aizenman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald B. DeFranco
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Oxidative stress induced by glutathione depletion in the mouse HT22 neuroblastoma cell line and embryonic rat immature cortical neurons causes a delayed, sustained activation of extracellular signal-regulated kinase (ERK) 1/2, which is required for cell death. This sustained activation of ERK1/2 is mediated primarily by a selective inhibition of distinct ERK1/2-directed phosphatases either by enhanced degradation (i.e., for mitogen-activated protein kinase phosphatase-1) or as shown here by reductions in enzymatic activity (i.e., for protein phosphatase type 2A). The inhibition of ERK1/2 phosphatases in HT22 cells and immature neurons subjected to glutathione depletion results from oxidative stress because phosphatase activity is restored in cells treated with the antioxidant butylated hydroxyanisole. This leads to reduced ERK1/2 activation and neuroprotection. Furthermore, an increase in free intracellular zinc that accompanies glutathione-induced oxidative stress in HT22 cells and immature neurons contributes to selective inhibition of ERK1/2 phosphatase activity and cell death. Finally, ERK1/2 also functions to maintain elevated levels of zinc. Thus, the elevation of intracellular zinc within neurons subjected to oxidative stress can trigger a robust positive feedback loop operating through activated ERK1/2 that rapidly sets into motion a zinc-dependent pathway of cell death.

Footnotes

  • This work was supported by National Institutes of Health grants NS38319 (to D.B.D.) and NS43277 (to E.A.)

  • Y.H. and R.S. contributed equally to this work and are considered co-first authors.

  • ABBREVIATIONS: ROS, reactive oxygen species; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; JNK, Jun NH2-terminal kinase; PI, propidium iodine; HCA, homocysteate; MEK, mitogen-activated protein kinase kinase; U0126, 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene; PP2A, protein phosphatase-type 2A; IP, immunoprecipitation; PAGE, polyacrylamide gel electrophoresis; PBST, phosphate-buffered saline with Tween 20; BSA, bovine serum albumin; TPEN, N,N,N′,N′-tetrakis-(2-pyridylmethyl)-ethylenediamine; AM, acetoxymethyl ester; MRE, metal regulatory element; DSP, dual-specificity protein phosphatase; BHA, butylated hydroxyanisole; TNF, tumor necrosis factor; MKP, mitogen-activated protein kinase phosphatase; DTT, dithiothreitol; p, phosphorylated.

    • Received May 21, 2008.
    • Accepted July 16, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 74 (4)
Molecular Pharmacology
Vol. 74, Issue 4
1 Oct 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Selective Inhibition of Mitogen-Activated Protein Kinase Phosphatases by Zinc Accounts for Extracellular Signal-Regulated Kinase 1/2-Dependent Oxidative Neuronal Cell Death
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Selective Inhibition of Mitogen-Activated Protein Kinase Phosphatases by Zinc Accounts for Extracellular Signal-Regulated Kinase 1/2-Dependent Oxidative Neuronal Cell Death

Yeung Ho, Ranmal Samarasinghe, Megan E. Knoch, Marcia Lewis, Elias Aizenman and Donald B. DeFranco
Molecular Pharmacology October 1, 2008, 74 (4) 1141-1151; DOI: https://doi.org/10.1124/mol.108.049064

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Selective Inhibition of Mitogen-Activated Protein Kinase Phosphatases by Zinc Accounts for Extracellular Signal-Regulated Kinase 1/2-Dependent Oxidative Neuronal Cell Death

Yeung Ho, Ranmal Samarasinghe, Megan E. Knoch, Marcia Lewis, Elias Aizenman and Donald B. DeFranco
Molecular Pharmacology October 1, 2008, 74 (4) 1141-1151; DOI: https://doi.org/10.1124/mol.108.049064
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics