Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Functional Role of Arginine 375 in Transmembrane Helix 6 of Multidrug Resistance Protein 4 (MRP4/ABCC4)

Azza A. K. El-Sheikh, Jeroen J. M. W. van den Heuvel, Elmar Krieger, Frans G. M. Russel and Jan B. Koenderink
Molecular Pharmacology October 2008, 74 (4) 964-971; DOI: https://doi.org/10.1124/mol.107.043661
Azza A. K. El-Sheikh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeroen J. M. W. van den Heuvel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elmar Krieger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frans G. M. Russel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan B. Koenderink
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Multidrug resistance protein (MRP) 4 transports a variety of endogenous and xenobiotic organic anions. MRP4 is widely expressed in the body and specifically localized to the renal apical proximal tubule cell membrane, where it mediates the excretion of these compounds into urine. To characterize the MRP4 substrate-binding site, the amino acids Phe368, Phe369, Glu374, Arg375, and Glu378 of transmembrane helix 6, and Arg998 of helix 12, localized in the intracellular half of the central pore, were mutated into the corresponding amino acids of MRP1 and MRP2. Membrane vesicles isolated from human embryonic kidney 293 cells overexpressing these mutants showed significantly reduced methotrexate (MTX) and cGMP transport activity compared with vesicles that expressed wild-type MRP4. The only exception was substitution of Arg375 with serine, which had no effect on cGMP transport but significantly decreased the affinity of MTX. Substitution of the same amino acid with a positively charged lysine returned the MTX affinity to that of the wild type. Furthermore, MTX inhibition of MRP4-mediated cGMP transport was noncompetitive, and the inhibition constant was increased by introduction of the R375S mutation. A homology model of MRP4 showed that Arg375 and Arg998 face right into the central aqueous pore of MRP4. We conclude that positively charged amino acids in transmembrane helices 6 and 12 contribute to the MRP4 substrate-binding pocket.

Footnotes

  • ABBREVIATIONS: ABC, ATP-binding cassette; MRP, multidrug resistance; TM, transmembrane α-helix(es); 8-azido-ATP-biotin, 8-azidoadenosine 5′-triphosphate 2′, 3′-biotin-long-chain-hydrazone; EYFP, enhanced yellow fluorescent protein; MTX, methotrexate; PCR, polymerase chain reaction; HEK, human embryonic kidney; E-64, N-(trans-epoxysuccinyl)-l-leucine 4-guanidinobutylamide; PDB, Protein Data Bank; MDR, multidrug resistant; NBD, nucleotide-binding domain(s).

    • Received November 20, 2007.
    • Accepted July 8, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 74 (4)
Molecular Pharmacology
Vol. 74, Issue 4
1 Oct 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional Role of Arginine 375 in Transmembrane Helix 6 of Multidrug Resistance Protein 4 (MRP4/ABCC4)
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Functional Role of Arginine 375 in Transmembrane Helix 6 of Multidrug Resistance Protein 4 (MRP4/ABCC4)

Azza A. K. El-Sheikh, Jeroen J. M. W. van den Heuvel, Elmar Krieger, Frans G. M. Russel and Jan B. Koenderink
Molecular Pharmacology October 1, 2008, 74 (4) 964-971; DOI: https://doi.org/10.1124/mol.107.043661

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Functional Role of Arginine 375 in Transmembrane Helix 6 of Multidrug Resistance Protein 4 (MRP4/ABCC4)

Azza A. K. El-Sheikh, Jeroen J. M. W. van den Heuvel, Elmar Krieger, Frans G. M. Russel and Jan B. Koenderink
Molecular Pharmacology October 1, 2008, 74 (4) 964-971; DOI: https://doi.org/10.1124/mol.107.043661
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics