Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Cross-Talk between Dopaminergic and Noradrenergic Systems in the Rat Ventral Tegmental Area, Locus Ceruleus, and Dorsal Hippocampus

Bruno P. Guiard, Mostafa El Mansari and Pierre Blier
Molecular Pharmacology November 2008, 74 (5) 1463-1475; DOI: https://doi.org/10.1124/mol.108.048033
Bruno P. Guiard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mostafa El Mansari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Blier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A decreased central dopaminergic and/or noradrenergic transmission is believed to be involved in the pathophysiology of depression. It is known that dopamine (DA) neurons in the ventral tegmental area (VTA) and norepinephrine (NE) neurons in the locus ceruleus (LC) are autoregulated by somatodendritic D2-like and α2-adrenoceptors, respectively. Complementing these autoreceptor-mediated inhibitory feedbacks, anatomical and functional studies have established a role for noradrenergic inputs in regulating dopaminergic activity, and reciprocally. In the present study, a microiontophoretic approach was used to characterize the postsynaptic catecholamine heteroreceptors involved in such regulations. In the VTA, the application of DA and NE significantly reduced the firing activity of DA neurons. In addition to a role for D2-like receptors in the inhibitory effects of both catecholamines, it was demonstrated that the α2-adrenoceptor antagonist idazoxan dampened the DA- and NE-induced attenuations of DA neuronal activity, indicating that both of these receptors are involved in the responsiveness of VTA DA neurons to catecholamines. In the LC, the effectiveness of iontophoretically applied NE and DA to suppress NE neuronal firing was blocked by idazoxan but not by the D2-like receptor antagonist raclopride, which suggested that only α2-adrenoceptors were involved. In the dorsal hippocampus, a forebrain region having a sparse dopaminergic innervation but receiving a dense noradrenergic input, the suppressant effects of DA and NE on pyramidal neurons were attenuated by idazoxan but not by raclopride. The suppressant effect of DA was prolonged by administration of the selective NE reuptake inhibitor desipramine and, to lesser extent, of the selective DA reuptake inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)-piperazine (GBR12909), suggesting that both the NE and DA transporters were involved in DA uptake in the hippocampus. These findings might help in designing new antidepressant strategies aimed at enhancing DA and NE neurotransmission.

Footnotes

  • This study was supported by the Canadian Institutes for Health Research grant (77838) and salary support from the University of Ottawa Institute of Mental Health Research (to B.P.G. and M.E.), as well as a Canada Research Chair in Psychopharmacology from the Canadian Government, and an Endowed Chair from the University of Ottawa Institute of Mental Health Research (to P.B.).

  • ABBREVIATIONS: DA, dopamine; CA, field of the hippocampus; DAT, dopamine transporter; GBR12909, 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine; NE, norepinephrine; NET, norepinephrine transporter; LC, locus ceruleus; RT, recovery time; VTA, ventral tegmental area; (+)-3-PP, 3-(3-hydroxyphenyl)-N-n-propylpiperidine.

    • Received April 18, 2008.
    • Accepted August 14, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 74 (5)
Molecular Pharmacology
Vol. 74, Issue 5
1 Nov 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cross-Talk between Dopaminergic and Noradrenergic Systems in the Rat Ventral Tegmental Area, Locus Ceruleus, and Dorsal Hippocampus
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Cross-Talk between Dopaminergic and Noradrenergic Systems in the Rat Ventral Tegmental Area, Locus Ceruleus, and Dorsal Hippocampus

Bruno P. Guiard, Mostafa El Mansari and Pierre Blier
Molecular Pharmacology November 1, 2008, 74 (5) 1463-1475; DOI: https://doi.org/10.1124/mol.108.048033

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Cross-Talk between Dopaminergic and Noradrenergic Systems in the Rat Ventral Tegmental Area, Locus Ceruleus, and Dorsal Hippocampus

Bruno P. Guiard, Mostafa El Mansari and Pierre Blier
Molecular Pharmacology November 1, 2008, 74 (5) 1463-1475; DOI: https://doi.org/10.1124/mol.108.048033
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Action of Org 34167 on HCN channels
  • The effects of echinocystic acid on Kv7 channels
  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics