Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Mechanistic Differences between GSH Transport by Multidrug Resistance Protein 1 (MRP1/ABCC1) and GSH Modulation of MRP1-Mediated Transport

Alice Rothnie, Gwenaëlle Conseil, Andrea Y. T. Lau, Roger G. Deeley and Susan P. C. Cole
Molecular Pharmacology December 2008, 74 (6) 1630-1640; DOI: https://doi.org/10.1124/mol.108.049080
Alice Rothnie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gwenaëlle Conseil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrea Y. T. Lau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roger G. Deeley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Susan P. C. Cole
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent polytopic membrane protein that transports many anticancer drugs and organic anions. Its transport mechanism is multifaceted, especially with respect to the participation of GSH. For example, vincristine is cotransported with GSH, estrone sulfate transport is stimulated by GSH, or MRP1 can transport GSH alone, and this can be stimulated by compounds such as verapamil or apigenin. Thus, the interactions between GSH and MRP1 are mechanistically complex. To examine the similarities and differences among the various GSH-associated mechanisms of MRP1 transport, we have measured first the effect of GSH and several GSH-associated substrates/modulators on the binding and hydrolysis of ATP by MRP1 using 8-azidoadenosine-5′-[32P]-triphosphate ([32P]azidoATP) analogs, and second the initial binding of GSH and GSH-associated substrates/modulators to MRP1. We observed that GSH or its nonreducing derivative S-methylGSH (S-mGSH), but none of the GSH-associated substrate/modulators, caused a significant increase in [γ-32P]azidoATP labeling of MRP1. Moreover, GSH and S-mGSH decreased levels of orthovanadate-induced trapping of [α-32P]azidoADP. [α-32P]azidoADP.Vi trapping was also decreased by estone sulfate, whereas vincristine, verapamil, and apigenin had no apparent effects on nucleotide interactions with MRP1. Furthermore, estrone sulfate and S-mGSH enhanced the effect of each other 15- and 10-fold, respectively. Second, although GSH binding increased the apparent affinity of MRP1 for all GSH-associated substrates/modulators tested, only estrone sulfate had a reciprocal effect on the apparent affinity of MRP1 for GSH. Overall, these results indicate significant mechanistic differences between MRP1-mediated transport of GSH and the ability of GSH to modulate MRP1 transport.

Footnotes

  • This work was supported by grant MOP-10519 from the Canadian Institutes of Health Research (CIHR). A.R. was supported by a CIHR postdoctoral fellowship. S.P.C.C. is the Canada Research Chair in Cancer Biology and Bracken Chair in Genetics and Molecular Medicine.

  • ABBREVIATIONS: MRP1, multidrug resistance protein 1; ABC, ATP binding cassette; S-mGSH, S-methyl glutathione; GSSG, glutathione disulfide; LTC4, leukotriene C4; E217βG, estradiol glucuronide; MSD, membrane-spanning domain; NBD, nucleotide binding domain; DTT, dithiothreitol; azidoATP, 8-azidoadenosine triphosphate; Vi, orthovanadate; PAGE, polyacrylamide gel electrophoresis; NBS, nucleotide binding site; [γ-32P]azidoATP, 8-azidoadenosine-5′-[γ-32P]triphosphate; [α-32P]azidoATP, 8-azidoadenosine-5′-[α-32P]triphosphate.

  • ↵ Embedded Image The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.

  • ↵1 Current affiliation: University of Warwick, Department of Biological Sciences, Gibbet Hill Campus, Coventry, United Kingdom.

    • Received May 21, 2008.
    • Accepted September 2, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 74 (6)
Molecular Pharmacology
Vol. 74, Issue 6
1 Dec 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanistic Differences between GSH Transport by Multidrug Resistance Protein 1 (MRP1/ABCC1) and GSH Modulation of MRP1-Mediated Transport
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Mechanistic Differences between GSH Transport by Multidrug Resistance Protein 1 (MRP1/ABCC1) and GSH Modulation of MRP1-Mediated Transport

Alice Rothnie, Gwenaëlle Conseil, Andrea Y. T. Lau, Roger G. Deeley and Susan P. C. Cole
Molecular Pharmacology December 1, 2008, 74 (6) 1630-1640; DOI: https://doi.org/10.1124/mol.108.049080

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Mechanistic Differences between GSH Transport by Multidrug Resistance Protein 1 (MRP1/ABCC1) and GSH Modulation of MRP1-Mediated Transport

Alice Rothnie, Gwenaëlle Conseil, Andrea Y. T. Lau, Roger G. Deeley and Susan P. C. Cole
Molecular Pharmacology December 1, 2008, 74 (6) 1630-1640; DOI: https://doi.org/10.1124/mol.108.049080
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics