Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Role of the Mammalian Copper Transporter 1 in the Cellular Accumulation of Platinum-Based Drugs

Christopher A. Larson, Brian G. Blair, Roohangiz Safaei and Stephen B. Howell
Molecular Pharmacology February 2009, 75 (2) 324-330; DOI: https://doi.org/10.1124/mol.108.052381
Christopher A. Larson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian G. Blair
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roohangiz Safaei
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen B. Howell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The mammalian copper transporter 1 (CTR1) is responsible for the uptake of copper from the extracellular space. In this study, we used an isogenic pair of CTR1(+/+) and CTR1(-/-) mouse embryo fibroblasts to examine the contribution of CTR1 to the influx of cisplatin (DDP), carboplatin (CBDCA), oxaliplatin (L-OHP), and transplatin. Exposure to DDP triggered the rapid degradation of CTR1, suggesting that its contribution to influx was likely to be on the initial phase of drug entry. Loss of CTR1 decreased the initial binding of DDP to cells and reduced influx measured over the first 5 min of drug exposure by 81%. Loss of CTR1 almost completely eliminated the initial influx of CBDCA and reduced the initial uptake of L-OHP by 68% but had no effect on the influx of transplatin. Loss of CTR1 rendered cells resistant to even high concentrations of DDP when measured in vitro, and re-expression of CTR1 in the CTR1(-/-) cells restored both DDP uptake and cytotoxicity. The growth of CTR1(-/-) tumor xenografts in which CTR1 levels were restored by infection with a lentivirus expressing wild-type CTR1 was reduced by a single maximum tolerated dose of DDP in vivo, whereas the CTR1(-/-) xenografts failed to respond at all. We conclude that CTR1 mediates the initial influx of DDP, CBDCA, and L-OHP and is a major determinant of responsiveness to DDP both in vitro and in vivo.

Footnotes

  • This work was supported by the National Institutes of Health National Cancer Institute [Grants CA78648 and 5T32-CA121938]. The production of 64Cu at Washington University School of Medicine was supported by the National Institutes of Health [Grant R24-CA86307].

  • Portions of this work were presented at the 2008 Annual Meeting of the American Association for Cancer Research: Larson C, Chung N, and Howell S (2008) Role of mammalian copper transporter (CTR1) in the cellular accumulation of cisplatin, carboplatin and oxaliplatin. Proc Am Assoc Cancer Res49:4771.

  • ABBREVIATIONS: CTR1, mammalian copper transporter 1; CBDCA, carboplatin; DDP, cisplatin; L-OHP, oxaliplatin; PBS, phosphate-buffered saline; ddH2O, double-distilled H2O; qRT-PCR, qualitative reverse transcriptase-polymerase chain reaction; BBR3464, [{trans-PtCl(NH3)2}2μ-(trans-Pt(NH3)2(H2N(CH2)6NH2)2)]4+.

    • Received October 1, 2008.
    • Accepted November 7, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 75 (2)
Molecular Pharmacology
Vol. 75, Issue 2
1 Feb 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Role of the Mammalian Copper Transporter 1 in the Cellular Accumulation of Platinum-Based Drugs
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Role of the Mammalian Copper Transporter 1 in the Cellular Accumulation of Platinum-Based Drugs

Christopher A. Larson, Brian G. Blair, Roohangiz Safaei and Stephen B. Howell
Molecular Pharmacology February 1, 2009, 75 (2) 324-330; DOI: https://doi.org/10.1124/mol.108.052381

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Role of the Mammalian Copper Transporter 1 in the Cellular Accumulation of Platinum-Based Drugs

Christopher A. Larson, Brian G. Blair, Roohangiz Safaei and Stephen B. Howell
Molecular Pharmacology February 1, 2009, 75 (2) 324-330; DOI: https://doi.org/10.1124/mol.108.052381
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Differential Drug Effects on Homo/Heteromeric hERG Channels
  • ACKR3 Senses CXCR4 Activation Through GRK Phosphorylation
  • Analgesic Effects and Mechanisms of Licochalcones
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics