Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Analysis of DNA Methylation and Histone Modification Profiles of Liver-Specific Transporters

Satoki Imai, Ryota Kikuchi, Hiroyuki Kusuhara, Shintaro Yagi, Kunio Shiota and Yuichi Sugiyama
Molecular Pharmacology March 2009, 75 (3) 568-576; DOI: https://doi.org/10.1124/mol.108.052589
Satoki Imai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryota Kikuchi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroyuki Kusuhara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shintaro Yagi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kunio Shiota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuichi Sugiyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Tissue-specific expression of transporters is tightly linked with their physiological functions through the regulation of the membrane transport of their substrates. We hypothesized that epigenetic regulation underlies the tissue-specific expression of mouse liver-specific transporters (Oatp1b2/Slco1b2, Ntcp/Slc10a1, Bsep/Abcb11, and Abcg5/g8). We examined their DNA methylation and histone modification profiles near the transcriptional start site (TSS) in the liver, kidney, and cerebrum. Genome-wide DNA methylation profiling with tissue-dependent differentially methylated region profiling with restriction tag-mediated amplification and subsequent bisulfite genomic sequencing demonstrated that the CpG dinucleotides around the TSS of Oatp1b2 (from -515 to +149 CpGs), Ntcp (from -481 to +495 CpGs), Bsep (from -339 to +282 CpGs), and Abcg5/g8 (from -161 to +5 CpGs for Abcg5, i.e., from -213 to -48 CpGs for Abcg8) were hypomethylated in the liver and hypermethylated in the kidney and cerebrum. The opposite pattern was observed for Pept2/Slc15a2 (from -638 to +4 CpGs), which was expressed in the kidney and cerebrum but not in the liver. These DNA methylation profiles are consistent with the tissue distribution of these transporters. A chromatin immunoprecipitation assay demonstrated that the histone H3 associated with Oatp1b2, Ntcp, Bsep, and Abcg5/g8 promoters was hyperacetylated in the liver but was acetylated very little in the kidney and cerebrum, whereas the upstream region of Pept2 was hyperacetylated only in the kidney and cerebrum. These results suggest the involvement of epigenetic systems in the tissue-specific expression of mouse transporters Oatp1b2, Ntcp, Bsep, Abcg5/g8, and Pept2.

Footnotes

  • ABBREVIATIONS: SLC, solute carrier; ABC, ATP binding cassette; Bsep, bile salt export pump; ChIP, chromatin immunoprecipitation; D-REAM, tissue-dependent differentially methylated region profiling with restriction tag-mediated amplification; HNF, hepatocyte nuclear factor; Ntcp, Na+-taurocholate-cotransporting polypeptide; Oatp, organic anion transporting polypeptide; PCR, polymerase chain reaction; RT-PCR, reverse transcription polymerase chain reaction; Pept2, peptide transporter 2; T-DMR, tissue-dependent differentially methylated region; T-DMRtag, tag of the tissue-dependent differentially methylated region; TSS, transcriptional start site.

  • ↵ Embedded Image The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.

    • Received October 7, 2008.
    • Accepted December 1, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 75 (3)
Molecular Pharmacology
Vol. 75, Issue 3
1 Mar 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Analysis of DNA Methylation and Histone Modification Profiles of Liver-Specific Transporters
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Analysis of DNA Methylation and Histone Modification Profiles of Liver-Specific Transporters

Satoki Imai, Ryota Kikuchi, Hiroyuki Kusuhara, Shintaro Yagi, Kunio Shiota and Yuichi Sugiyama
Molecular Pharmacology March 1, 2009, 75 (3) 568-576; DOI: https://doi.org/10.1124/mol.108.052589

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Analysis of DNA Methylation and Histone Modification Profiles of Liver-Specific Transporters

Satoki Imai, Ryota Kikuchi, Hiroyuki Kusuhara, Shintaro Yagi, Kunio Shiota and Yuichi Sugiyama
Molecular Pharmacology March 1, 2009, 75 (3) 568-576; DOI: https://doi.org/10.1124/mol.108.052589
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Michaelis Menten quantification of GPCR-G protein signalling
  • Human mAb 3F1 targeting the fuctional epitopes of Siglec-15
  • The regulation and mechanisms of ImKTX58 on KV1.3 channel
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics