Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Angiotensin-Converting Enzyme (ACE) Inhibitors Modulate Cellular Retinol-Binding Protein 1 and Adiponectin Expression in Adipocytes via the ACE-Dependent Signaling Cascade

Karin Kohlstedt, Cynthia Gershome, Caroline Trouvain, Wolf-Karsten Hofmann, Stephan Fichtlscherer and Ingrid Fleming
Molecular Pharmacology March 2009, 75 (3) 685-692; DOI: https://doi.org/10.1124/mol.108.051631
Karin Kohlstedt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cynthia Gershome
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Caroline Trouvain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wolf-Karsten Hofmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephan Fichtlscherer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ingrid Fleming
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Inhibitors of the angiotensin-converting enzyme (ACE) decrease angiotensin II production and activate an intracellular signaling cascade that affects gene expression in endothelial cells. Because ACE inhibitors have been reported to delay the onset of type 2 diabetes, we determined ACE signaling-modulated gene expression in endothelial cells and adipocytes. Using differential gene expression analysis, several genes were identified that were 3-fold up- or down-regulated by ramiprilat in cells expressing wild-type ACE versus cells expressing a signaling-dead ACE mutant. One up-regulated gene was the cellular retinol-binding protein 1 (CRBP1). In adipocytes, the overexpression of CRBP1 enhanced (4- to 5-fold) the activity of promoters containing response elements for retinol-dependent nuclear receptors [retinoic acid receptor (RAR) and retinoid X receptor (RXR)] or peroxisome proliferator-activated receptors (PPAR). CRBP1 overexpression also enhanced the promoter activity (by 470 ± 40%) and expression/release of the anti-inflammatory and antiatherogenic adipokine adiponectin (cellular adiponectin by 196 ± 24%, soluble adiponectin by 228 ± 74%). Significantly increased adiponectin secretion was also observed after ACE inhibitor treatment of human preadipocytes, an effect prevented by small interfering RNA against CRBP1. Furthermore, in ob/ob mice, ramipril markedly potentiated both the basal (approximately 2-fold) and rosiglitazonestimulated circulating levels of adiponectin. In patients with coronary artery disease or type 2 diabetes, ACE inhibition also significantly increased plasma adiponectin levels (1.6- or 2.1-fold, respectively). In summary, ACE inhibitors affect adipocyte homeostasis via CRBP1 through the activation of RAR/RXR-PPAR signaling and up-regulation of adiponectin. The latter may contribute to the beneficial effects of ACE inhibitors on the development of type 2 diabetes in patients with an activated renin-angiotensin system.

Footnotes

  • This work was supported partly by the Deutsche Forschungsgemeinschaft [Grant FL 364/2-2, Exzellenzcluster 147 “Cardio-Pulmonary Systems”]; the Heinrich and Fritz Riese-Stiftung; and a research grant from sanofi-aventis.

  • ABBREVIATIONS: ACE, angiotensin-converting enzyme; Adn, adiponectin; atRA, all-trans-retinoic acid; CRBP1, cellular retinol-binding protein 1; 9cisRA, 9-cis-retinoic acid; PPAR, peroxisome proliferator-activated receptor; RXR, retinoid X receptor; RAR, retinoic acid receptor; siRNA, small interfering RNA; GFP, green fluorescent protein.

    • Received August 29, 2008.
    • Accepted December 24, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 75 (3)
Molecular Pharmacology
Vol. 75, Issue 3
1 Mar 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Angiotensin-Converting Enzyme (ACE) Inhibitors Modulate Cellular Retinol-Binding Protein 1 and Adiponectin Expression in Adipocytes via the ACE-Dependent Signaling Cascade
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Angiotensin-Converting Enzyme (ACE) Inhibitors Modulate Cellular Retinol-Binding Protein 1 and Adiponectin Expression in Adipocytes via the ACE-Dependent Signaling Cascade

Karin Kohlstedt, Cynthia Gershome, Caroline Trouvain, Wolf-Karsten Hofmann, Stephan Fichtlscherer and Ingrid Fleming
Molecular Pharmacology March 1, 2009, 75 (3) 685-692; DOI: https://doi.org/10.1124/mol.108.051631

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Angiotensin-Converting Enzyme (ACE) Inhibitors Modulate Cellular Retinol-Binding Protein 1 and Adiponectin Expression in Adipocytes via the ACE-Dependent Signaling Cascade

Karin Kohlstedt, Cynthia Gershome, Caroline Trouvain, Wolf-Karsten Hofmann, Stephan Fichtlscherer and Ingrid Fleming
Molecular Pharmacology March 1, 2009, 75 (3) 685-692; DOI: https://doi.org/10.1124/mol.108.051631
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Human mAb 3F1 targeting the fuctional epitopes of Siglec-15
  • The regulation and mechanisms of ImKTX58 on KV1.3 channel
  • EIPA, HMA and SMN2 gene regulation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics