Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Contribution of Binding Enthalpy and Entropy to Affinity of Antagonist and Agonist Binding at Human and Guinea Pig Histamine H1-Receptor

Hans-Joachim Wittmann, Roland Seifert and Andrea Strasser
Molecular Pharmacology July 2009, 76 (1) 25-37; DOI: https://doi.org/10.1124/mol.109.055384
Hans-Joachim Wittmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roland Seifert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrea Strasser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

For several GPCRs, discrimination between agonism and antagonism is possible on the basis of thermodynamics parameters, such as binding enthalpy and entropy. In this study, we analyze whether agonists and antagonists can also be discriminated thermodynamically at the histamine H1 receptor (H1R). Because previous studies revealed species differences in pharmacology between human H1R (hH1R) and guinea pig H1R (gpH1R), we analyzed a broad spectrum of H1R antagonists and agonists at hH1R and gpH1R. [3H]Mepyramine competition binding assay were performed at five different temperatures in a range from 283.15 to 303.15 K. In addition, we performed a temperature-dependent three-dimensional quantitative structure activity relationship study to predict binding enthalpy and entropy for histaprodifen derivatives, which can bind to H1R in two different orientations. Our studies revealed significant species differences in binding enthalpy and entropy between hH1R and gpH1R for some antagonists and agonists. Furthermore, in some cases, we found changes in heat capacity of the binding process that were different from zero. Differences in flexibility of the ligands may be responsible for this observation. For most ligands, the binding process to hH1R and gpH1R is clearly entropy-driven. In contrast, for the endogenous ligand histamine, the binding process is significantly enthalpy-driven at both species isoforms. Thus, a definite discrimination between antagonism and agonism based on thermodynamic parameters is possible for neither hH1R nor gpH1R, but thermodynamic analysis of ligand-binding may be a novel approach to dissect agonist- and antagonist-specific receptor conformations.

Footnotes

  • This work was supported by the Research Training Program (Graduiertenkolleg) [Grant GRK760] “Medicinal Chemistry: Molecular Recognition—Ligand-Receptor Interactions” of the Deutsche Forschungsgemeinschaft.

  • ABBREVIATIONS: H1R, histamine H1-receptor; gp, guinea pig; h, human; GPCR, G-protein coupled receptor; 5-HT, 5-hydroxytryptamine; 3D-QSAR, three-dimensional quantitative structure activity relationship.

    • Accepted April 3, 2009.
    • Received February 9, 2009.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 76 (1)
Molecular Pharmacology
Vol. 76, Issue 1
1 Jul 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Contribution of Binding Enthalpy and Entropy to Affinity of Antagonist and Agonist Binding at Human and Guinea Pig Histamine H1-Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Contribution of Binding Enthalpy and Entropy to Affinity of Antagonist and Agonist Binding at Human and Guinea Pig Histamine H1-Receptor

Hans-Joachim Wittmann, Roland Seifert and Andrea Strasser
Molecular Pharmacology July 1, 2009, 76 (1) 25-37; DOI: https://doi.org/10.1124/mol.109.055384

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Contribution of Binding Enthalpy and Entropy to Affinity of Antagonist and Agonist Binding at Human and Guinea Pig Histamine H1-Receptor

Hans-Joachim Wittmann, Roland Seifert and Andrea Strasser
Molecular Pharmacology July 1, 2009, 76 (1) 25-37; DOI: https://doi.org/10.1124/mol.109.055384
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics