Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
OtherArticle

Differential Effects of Selective Cyclooxygenase-2 Inhibitors on Vascular Smooth Muscle Ion Channels May Account for Differences in Cardiovascular Risk Profiles

Lioubov I. Brueggemann, Alexander R. Mackie, Bharath K. Mani, Leanne L. Cribbs and Kenneth L. Byron
Molecular Pharmacology November 2009, 76 (5) 1053-1061; DOI: https://doi.org/10.1124/mol.109.057844
Lioubov I. Brueggemann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexander R. Mackie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bharath K. Mani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leanne L. Cribbs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth L. Byron
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Celecoxib, rofecoxib, and diclofenac are clinically used cyclooxygenase-2 (COX-2) inhibitors, which have been under intense scrutiny because long-term rofecoxib (Vioxx; Merck, Whitehouse Station, NJ) treatment was found to increase the risk of adverse cardiovascular events. A differential risk profile for these drugs has emerged, but the underlying mechanisms have not been fully elucidated. We investigated the effects of celecoxib, rofecoxib, and diclofenac on ionic currents and calcium signaling in vascular smooth muscle cells (VSMCs) using patch-clamp techniques and fura-2 fluorescence and on arterial constriction using pressure myography. Celecoxib, but not rofecoxib or diclofenac, dramatically enhanced KCNQ (Kv7) potassium currents and suppressed L-type voltage-sensitive calcium currents in A7r5 rat aortic smooth muscle cells (native KCNQ currents or overexpressed human KCNQ5 currents) and freshly isolated rat mesenteric artery myocytes. The effects of celecoxib were concentration-dependent within the therapeutic concentration range, and were reversed on washout. Celecoxib, but not rofecoxib, also inhibited calcium responses to vasopressin in A7r5 cells and dilated intact or endothelium-denuded rat mesenteric arteries. A celecoxib analog, 2,5-dimethyl-celecoxib, which does not inhibit COX-2, mimicked celecoxib in its enhancement of vascular KCNQ5 currents, suppression of L-type calcium currents, and vasodilation. We conclude that celecoxib inhibits calcium responses in VSMCs by enhancing KCNQ5 currents and suppressing L-type calcium currents, which ultimately reduces vascular tone. These effects are independent of its COX-2 inhibitory actions and may explain the differential risk of cardiovascular events in patients taking different drugs of this class.

  • NSAID, nonsteroidal anti-inflammatory drug
  • AVP, [Arg8]-vasopressin
  • COX, cyclooxygenase
  • DMC, 2,5-dimethyl-celecoxib
  • MASMC, mesenteric artery smooth muscle cell
  • VSMC, vascular smooth muscle cell
  • ANOVA, analysis of variance.

Footnotes

  • ↵Embedded Image The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.

  • This work was supported in part by the National Institutes of Health National Heart Lung and Blood Institute [Grants R01-HL070670, R01-HL089564]; and the American Heart Association [Grant 0715618Z].

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    doi:10.1124/mol.109.057844

  • ABBREVIATIONS:

    • Received May 18, 2009.
    • Accepted July 15, 2009.
  • © 2009 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 76 (5)
Molecular Pharmacology
Vol. 76, Issue 5
November 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential Effects of Selective Cyclooxygenase-2 Inhibitors on Vascular Smooth Muscle Ion Channels May Account for Differences in Cardiovascular Risk Profiles
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherArticle

Differential Effects of Selective Cyclooxygenase-2 Inhibitors on Vascular Smooth Muscle Ion Channels May Account for Differences in Cardiovascular Risk Profiles

Lioubov I. Brueggemann, Alexander R. Mackie, Bharath K. Mani, Leanne L. Cribbs and Kenneth L. Byron
Molecular Pharmacology November 1, 2009, 76 (5) 1053-1061; DOI: https://doi.org/10.1124/mol.109.057844

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherArticle

Differential Effects of Selective Cyclooxygenase-2 Inhibitors on Vascular Smooth Muscle Ion Channels May Account for Differences in Cardiovascular Risk Profiles

Lioubov I. Brueggemann, Alexander R. Mackie, Bharath K. Mani, Leanne L. Cribbs and Kenneth L. Byron
Molecular Pharmacology November 1, 2009, 76 (5) 1053-1061; DOI: https://doi.org/10.1124/mol.109.057844
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics