Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Position 5.46 of the Serotonin 5-HT2A Receptor Contributes to a Species-Dependent Variation for the 5-HT2C Agonist (R)-9-Ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one: Impact on Selectivity and Toxicological Evaluation

Keith J. Miller, Ginger Y. Wu, Jeffrey G. Varnes, Paul Levesque, Julia Li, Danshi Li, Jeffrey A. Robl, Karen A. Rossi and Dean A. Wacker
Molecular Pharmacology December 2009, 76 (6) 1211-1219; DOI: https://doi.org/10.1124/mol.109.059204
Keith J. Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ginger Y. Wu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey G. Varnes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Levesque
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julia Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Danshi Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey A. Robl
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karen A. Rossi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dean A. Wacker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Successful development of 5-HT2C agonists requires selectivity versus the highly homologous 5-HT2A receptor, because agonism at this receptor can result in significant adverse events. (R)-9-Ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one (compound 1) is a potent 5-HT2C agonist exhibiting selectivity over the human 5-HT2A receptor. Evaluation of the compound at the rat 5-HT2A receptor, however, revealed potent binding and agonist functional activity. The physiological consequence of this higher potency was the observation of a significant increase in blood pressure in conscious telemeterized rats that could be prevented by ketanserin. Docking of compound 1 in a homology model of the 5-HT2A receptor indicated a possible binding mode in which the ethyl group at the 9-position of the molecule was oriented toward position 5.46 of the 5-HT2A receptor. Within the human 5-HT2A receptor, position 5.46 is Ser242; however, in the rat 5-HT2A receptor, it is Ala242, suggesting that the potent functional activity in this species resulted from the absence of the steric bulk provided by the -OH moiety of the Ser in the human isoform. We confirmed this hypothesis using site-directed mutagenesis through the mutation of both the human receptor Ser242 to Ala and the rat receptor Ala242 to Ser, followed by radioligand binding and second messenger studies. In addition, we attempted to define the space allowed by the alanine by evaluating compounds with larger substitutions at the 9-position. The data indicate that position 5.46 contributed to the species difference in 5-HT2A receptor potency observed for a pyrazinoisoindolone compound, resulting in the observation of a significant cardiovascular safety signal.

Footnotes

  • ↵Embedded Image The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    doi:10.1124/mol.109.059204

  • ABBREVIATIONS:

    5-HT
    5-hydroxytryptamine (serotonin)
    CNS
    central nervous system
    DOI
    4-iodo-2,5-dimethoxyphenylisopropylamine
    GPCR
    G-protein-coupled receptor
    HEK
    human embryonic kidney
    FLIPR
    fluorometric imaging plate reader; compound 1, (R)-9-ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one
    compound 2
    (R)-9-isopropyl-1,3,4,10b-tetrahydro-7-trifluormethylpyrazino[2,1-a]isoinol-6(2H)-one
    WT
    wild type
    TM
    transmembrane.

    • Received July 10, 2009.
    • Accepted September 17, 2009.
  • © 2009 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 76 (6)
Molecular Pharmacology
Vol. 76, Issue 6
1 Dec 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Position 5.46 of the Serotonin 5-HT2A Receptor Contributes to a Species-Dependent Variation for the 5-HT2C Agonist (R)-9-Ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one: Impact on Selectivity and Toxicological Evaluation
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Position 5.46 of the Serotonin 5-HT2A Receptor Contributes to a Species-Dependent Variation for the 5-HT2C Agonist (R)-9-Ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one: Impact on Selectivity and Toxicological Evaluation

Keith J. Miller, Ginger Y. Wu, Jeffrey G. Varnes, Paul Levesque, Julia Li, Danshi Li, Jeffrey A. Robl, Karen A. Rossi and Dean A. Wacker
Molecular Pharmacology December 1, 2009, 76 (6) 1211-1219; DOI: https://doi.org/10.1124/mol.109.059204

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Position 5.46 of the Serotonin 5-HT2A Receptor Contributes to a Species-Dependent Variation for the 5-HT2C Agonist (R)-9-Ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one: Impact on Selectivity and Toxicological Evaluation

Keith J. Miller, Ginger Y. Wu, Jeffrey G. Varnes, Paul Levesque, Julia Li, Danshi Li, Jeffrey A. Robl, Karen A. Rossi and Dean A. Wacker
Molecular Pharmacology December 1, 2009, 76 (6) 1211-1219; DOI: https://doi.org/10.1124/mol.109.059204
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics