Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Crofelemer, an Antisecretory Antidiarrheal Proanthocyanidin Oligomer Extracted from Croton lechleri, Targets Two Distinct Intestinal Chloride Channels

Lukmanee Tradtrantip, Wan Namkung and A. S. Verkman
Molecular Pharmacology January 2010, 77 (1) 69-78; DOI: https://doi.org/10.1124/mol.109.061051
Lukmanee Tradtrantip
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wan Namkung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. S. Verkman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Crofelemer, a purified proanthocyanidin oligomer extracted from the bark latex of Croton lechleri, is in clinical trials for secretory diarrheas of various etiologies. We investigated the antisecretory mechanism of crofelemer by determining its effect on the major apical membrane transport and signaling processes involved in intestinal fluid transport. Using cell lines and measurement procedures to isolate the effects on individual membrane transport proteins, crofelemer at 50 μM had little or no effect on the activity of epithelial Na+ or K+ channels or on cAMP or calcium signaling. Crofelemer inhibited the cystic fibrosis transmembrane regulator (CFTR) Cl− channel with maximum inhibition of ∼60% and an IC50 ∼7 μM. Crofelemer action at an extracellular site on CFTR produced voltage-independent block with stabilization of the channel closed state. Crofelemer did not affect the potency of glycine hydrazide or thiazolidinone CFTR inhibitors. Crofelemer action resisted washout, with <50% reversal of CFTR inhibition after 4 h. Crofelemer was also found to strongly inhibit the intestinal calcium-activated Cl− channel TMEM16A by a voltage-independent inhibition mechanism with maximum inhibition >90% and IC50 ∼6.5 μM. The dual inhibitory action of crofelemer on two structurally unrelated prosecretory intestinal Cl− channels may account for its intestinal antisecretory activity.

Footnotes

  • This work was supported by the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases [Grants DK72517, DK35124, DK86125]; the National Institutes of Health National Heart, Lung, and Blood Institute [Grant HL73856]; the National Institutes of Health National Eye Institute [Grant EY13574]; the National Institutes of Health National Institute of Biomedical Imaging and Bioengineering [Grant EB00415]; the Cystic Fibrosis Foundation [Grant R613]; and an unrestricted gift from Napo Pharmaceuticals.

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    doi:10.1124/mol.109.061051

  • ABBREVIATIONS:

    CFTR
    cystic fibrosis transmembrane conductance regulator
    CaCC
    calcium-activated chloride channel
    CFTRinh-172
    thiazolidinone cystic fibrosis transmembrane conductance regulator inhibitor
    CPT-cAMP
    chlorophenylthio-cAMP
    FRT
    Fisher rat thyroid
    GlyH-101
    glycine hydrazide cystic fibrosis transmembrane conductance regulator inhibitor
    IBMX
    3-isobutyl-1-methylxanthine
    NMDG-Cl
    N-methyl-d-glucamine chloride.

    • Received September 15, 2009.
    • Accepted October 5, 2009.
  • © 2010 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 77 (1)
Molecular Pharmacology
Vol. 77, Issue 1
1 Jan 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Crofelemer, an Antisecretory Antidiarrheal Proanthocyanidin Oligomer Extracted from Croton lechleri, Targets Two Distinct Intestinal Chloride Channels
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Crofelemer, an Antisecretory Antidiarrheal Proanthocyanidin Oligomer Extracted from Croton lechleri, Targets Two Distinct Intestinal Chloride Channels

Lukmanee Tradtrantip, Wan Namkung and A. S. Verkman
Molecular Pharmacology January 1, 2010, 77 (1) 69-78; DOI: https://doi.org/10.1124/mol.109.061051

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Crofelemer, an Antisecretory Antidiarrheal Proanthocyanidin Oligomer Extracted from Croton lechleri, Targets Two Distinct Intestinal Chloride Channels

Lukmanee Tradtrantip, Wan Namkung and A. S. Verkman
Molecular Pharmacology January 1, 2010, 77 (1) 69-78; DOI: https://doi.org/10.1124/mol.109.061051
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Relapsed-Leukemia Model with NT5C2/PRPS1 Hotspot Mutations
  • The Binding Site for KCI807 in the Androgen Receptor
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics