Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Synergistically Enhanced CYP2B6 Inducibility between a Polymorphic Mutation in CYP2B6 Promoter and Pregnane X Receptor Activation

Haishan Li, Stephen S. Ferguson and Hongbing Wang
Molecular Pharmacology October 2010, 78 (4) 704-713; DOI: https://doi.org/10.1124/mol.110.065185
Haishan Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen S. Ferguson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hongbing Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

CYP2B6 is a highly inducible and polymorphic enzyme involved in the metabolism of an increasing number of clinically important drugs. Significant interindividual variability in CYP2B6 expression has been attributed to either genetic polymorphisms or chemical-mediated induction through the activation of constitutive androstane receptor and/or pregnane X receptor (PXR). It was reported that the −82T→C substitution within the CYP2B6*22 allele creates a functional CCAAT/enhancer-binding protein (C/EBP) binding site and enhances the basal expression of the CYP2B6 gene. Here, we explored whether this polymorphic mutation could affect drug-mediated induction of CYP2B6. Cell-based promoter reporter assays demonstrated that CYP2B6 luciferase activity was synergistically enhanced in the presence of both −82T→C mutation and rifampicin (RIF)-activated PXR. On the other hand, this synergism was attenuated by disrupting the C/EBP binding site or knocking down C/EBPα expression. Mechanistic studies revealed that C/EBPα plays an important role in such synergism by directly interacting with PXR; enhancing RIF-mediated recruitment of PXR to the −82T→C harboring CYP2B6 promoter; and looping the PXR-bound distal phenobarbital-responsive enhancer module toward the proximal C/EBP binding site. Furthermore, the genotype-phenotype association was evaluated in cultured human primary hepatocytes from 44 donors. Interestingly, RIF-mediated induction of CYP2B6 in four −82T/C carriers was higher compared with that in the reference −82T/T homozygotes. Together, our results demonstrate, for the first time, a synergistic interplay between a CYP2B6 polymorphism and PXR-mediated induction, which may contribute to the large individual variations and inducibility of CYP2B6 in humans.

Footnotes

  • ↵Embedded Image The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.

  • This work was supported by the National Institute of Health National Institute of Diabetes and Digestive and Kidney Diseases [Grant DK061652].

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    doi:10.1124/mol.110.065185.

  • ABBREVIATIONS:

    NR
    nuclear receptor
    CAR
    constitutive androstane receptor
    C/EBP
    CCAAT/enhancer-binding protein
    ChIP
    chromatin immunoprecipitation assay
    CoIP
    coimmunoprecipitation assay
    3C
    chromosome conformation capture assay
    DMSO
    dimethyl sulfoxide
    PB
    phenobarbital
    PBREM
    phenobarbital-responsive enhancer module
    PXR
    pregnane X receptor
    RIF
    rifampicin
    XREM
    xenobiotic-responsive enhancer module
    SNP
    single nucleotide polymorphism
    kb
    kilobase
    bp
    base pair
    siRNA
    short interfering RNA
    PCR
    polymerase chain reaction
    GAPDH
    glyceraldehyde-3-phosphate dehydrogenase
    IP
    immunoprecipitation
    RT-PCR
    reverse transcriptase polymerase chain reaction
    CYP2B6-82C
    CYP2B6 −82T→C.

  • Received March 30, 2010.
  • Accepted July 12, 2010.
  • Copyright © 2010 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 78 (4)
Molecular Pharmacology
Vol. 78, Issue 4
1 Oct 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Synergistically Enhanced CYP2B6 Inducibility between a Polymorphic Mutation in CYP2B6 Promoter and Pregnane X Receptor Activation
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Synergistically Enhanced CYP2B6 Inducibility between a Polymorphic Mutation in CYP2B6 Promoter and Pregnane X Receptor Activation

Haishan Li, Stephen S. Ferguson and Hongbing Wang
Molecular Pharmacology October 1, 2010, 78 (4) 704-713; DOI: https://doi.org/10.1124/mol.110.065185

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Synergistically Enhanced CYP2B6 Inducibility between a Polymorphic Mutation in CYP2B6 Promoter and Pregnane X Receptor Activation

Haishan Li, Stephen S. Ferguson and Hongbing Wang
Molecular Pharmacology October 1, 2010, 78 (4) 704-713; DOI: https://doi.org/10.1124/mol.110.065185
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Anti-aromatase activity of exemestane phase II metabolites
  • α-Conotoxin Binding Site on the GABAB Receptor
  • Upacicalcet binds to the amino acid binding site of CaSR
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics