Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Tarantula Toxins ProTx-II and Huwentoxin-IV Differentially Interact with Human Nav1.7 Voltage Sensors to Inhibit Channel Activation and Inactivation

Yucheng Xiao, Kenneth Blumenthal, James O. Jackson II, Songping Liang and Theodore R. Cummins
Molecular Pharmacology December 2010, 78 (6) 1124-1134; DOI: https://doi.org/10.1124/mol.110.066332
Yucheng Xiao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth Blumenthal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James O. Jackson II
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Songping Liang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Theodore R. Cummins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The voltage-gated sodium channel Nav1.7 plays a crucial role in pain, and drugs that inhibit hNav1.7 may have tremendous therapeutic potential. ProTx-II and huwentoxin-IV (HWTX-IV), cystine knot peptides from tarantula venoms, preferentially block hNav1.7. Understanding the interactions of these toxins with sodium channels could aid the development of novel pain therapeutics. Whereas both ProTx-II and HWTX-IV have been proposed to preferentially block hNav1.7 activation by trapping the domain II voltage-sensor in the resting configuration, we show that specific residues in the voltage-sensor paddle of domain II play substantially different roles in determining the affinities of these toxins to hNav1.7. The mutation E818C increases ProTx-II's and HWTX-IV's IC50 for block of hNav1.7 currents by 4- and 400-fold, respectively. In contrast, the mutation F813G decreases ProTx-II affinity by 9-fold but has no effect on HWTX-IV affinity. It is noteworthy that we also show that ProTx-II, but not HWTX-IV, preferentially interacts with hNav1.7 to impede fast inactivation by trapping the domain IV voltage-sensor in the resting configuration. Mutations E1589Q and T1590K in domain IV each decreased ProTx-II's IC50 for impairment of fast inactivation by ∼6-fold. In contrast mutations D1586A and F1592A in domain-IV increased ProTx-II's IC50 for impairment of fast inactivation by ∼4-fold. Our results show that whereas ProTx-II and HWTX-IV binding determinants on domain-II may overlap, domain II plays a much more crucial role for HWTX-IV, and contrary to what has been proposed to be a guiding principle of sodium channel pharmacology, molecules do not have to exclusively target the domain IV voltage-sensor to influence sodium channel inactivation.

Footnotes

  • ↵Embedded Image The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.

  • This work was supported by National Institutes of Health National Institute of Neurological Disorders and Stroke [Grants NS054642, NS053422]; the 973 Research Program of China [Contract 2010CB529800]; and the Program for New Century Excellent Talents in University [Contract NCET-07-0279].

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    doi:10.1124/mol.110.066332.

  • ABBREVIATIONS:

    HWTX-IV
    huwentoxin-IV
    TTX
    tetrodotoxin
    WT
    wild type
    HEK
    human embryonic kidney
    DI
    domain I
    DII
    domain II
    DIII
    domain III
    DIV
    domain IV
    S
    transmembrane segment.

  • Received May 12, 2010.
  • Accepted September 20, 2010.
  • Copyright © 2010 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 78 (6)
Molecular Pharmacology
Vol. 78, Issue 6
1 Dec 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Tarantula Toxins ProTx-II and Huwentoxin-IV Differentially Interact with Human Nav1.7 Voltage Sensors to Inhibit Channel Activation and Inactivation
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Tarantula Toxins ProTx-II and Huwentoxin-IV Differentially Interact with Human Nav1.7 Voltage Sensors to Inhibit Channel Activation and Inactivation

Yucheng Xiao, Kenneth Blumenthal, James O. Jackson, Songping Liang and Theodore R. Cummins
Molecular Pharmacology December 1, 2010, 78 (6) 1124-1134; DOI: https://doi.org/10.1124/mol.110.066332

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Tarantula Toxins ProTx-II and Huwentoxin-IV Differentially Interact with Human Nav1.7 Voltage Sensors to Inhibit Channel Activation and Inactivation

Yucheng Xiao, Kenneth Blumenthal, James O. Jackson, Songping Liang and Theodore R. Cummins
Molecular Pharmacology December 1, 2010, 78 (6) 1124-1134; DOI: https://doi.org/10.1124/mol.110.066332
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • α-Conotoxin Binding Site on the GABAB Receptor
  • Upacicalcet binds to the amino acid binding site of CaSR
  • Characterization of GRD and LCCH3 from Human Louse
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics