Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

α4β2 Nicotinic Receptors Partially Mediate Anti-Inflammatory Effects through Janus Kinase 2-Signal Transducer and Activator of Transcription 3 but Not Calcium or cAMP Signaling

Vishnu Hosur and Ralph H. Loring
Molecular Pharmacology January 2011, 79 (1) 167-174; DOI: https://doi.org/10.1124/mol.110.066381
Vishnu Hosur
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ralph H. Loring
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Despite evidence that smoking confers protection against neurological disorders, how and whether specific nicotinic receptor subtypes are involved is unknown. We reported previously that nicotine suppresses constitutive nuclear factor κB (NF-κB) activity and thereby proinflammatory cytokine (PIC) production in SHEP1 cells stably transfected with α4β2 nicotinic receptors. Here, we report the anti-inflammatory effects of nicotine pretreatment in lipopolysaccharide (LPS)-stimulated SHEP1 cells. Nicotine (100–300 nM, concentrations found in smoker's blood) blocked LPS-induced NF-κB translocation and production of PICs interleukin (IL)-1β and IL-6 but only partially blocked inhibitor of nuclear factor-κBα (IκBα) phosphorylation. These effects were exclusively in cells transfected with α4β2 receptors but not in wild types. The cell-permeable calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid-acetoxymethyl ester, the adenylate cyclase stimulant forskolin, and a specific protein kinase A (PKA) inhibitor PKI 14-22-amide failed to block the effect of nicotine on LPS-induced NF-κB translocation and IκBα phosphorylation. However, the effects of nicotine on NF-κB activity were significantly blocked by the highly specific janus kinase 2 (JAK2) inhibitor α-cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG-490) and the signal transducer and activator of transcription 3 (STAT3) inhibitor 2-hydroxy-4-[[[[(4-methylphenyl)sulfonyl]oxy]acetyl]amino]-benzoic acid (NSC74859). These findings reveal a calcium- and cAMP-PKA-independent signaling cascade and suggest a role for JAK2-STAT3 transduction in α4β2-mediated attenuation of LPS-induced inflammation. Anti-inflammatory effects of nicotine may therefore be mediated through α4β2 receptors, the predominant high-affinity binding sites for nicotine in the central nervous system, in addition to the better-established α7 receptors.

Footnotes

  • This research was supported in part by Northeastern University (Research and Scholarship Development Fund Grant); and by private consulting unrelated to this project.

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    doi:10.1124/mol.110.066381.

  • ↵Embedded Image The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.

  • ABBREVIATIONS:

    AD
    Alzheimer's disease
    BAPTA
    1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid
    AM
    acetoxymethyl ester
    hα4β2 SHEP1
    human SHEP1 neuroblastoma-derived cells stably transfected with human α4β2 nicotinic receptors
    HBSS
    Hanks' balanced salt solution
    IκBα
    inhibitor of nuclear factor of κ light polypeptide gene enhancer in B-cells, α
    JAK2
    Janus kinase 2
    nAChR
    nicotinic acetylcholine receptor
    NF-κB
    nuclear factor κB
    PBS
    phosphate-buffered saline
    PD
    Parkinson's disease
    PIC
    proinflammatory cytokine
    RFU
    relative fluorescence units
    STAT3
    signal transducer and activator of transcription 3
    TLR4
    Toll-like receptor 4
    AG-490
    α-cyano-(3,4-dihydroxy)-N-benzylcinnamide
    NSC74859
    2-hydroxy-4-[[[[(4-methylphenyl)sulfonyl]oxy]acetyl]amino]-benzoic acid
    CNS
    central nervous system
    PKA
    protein kinase A
    IL
    interleukin
    LPS
    lipopolysaccharide
    RT
    room temperature
    TBS
    Tris-buffered saline
    HRP
    horseradish peroxidase
    TNFα
    tumor necrosis factor α
    ELISA
    enzyme-linked immunosorbent assay
    A23187
    calcimycin.

  • Received May 17, 2010.
  • Accepted October 13, 2010.
  • Copyright © 2011 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 79 (1)
Molecular Pharmacology
Vol. 79, Issue 1
1 Jan 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
α4β2 Nicotinic Receptors Partially Mediate Anti-Inflammatory Effects through Janus Kinase 2-Signal Transducer and Activator of Transcription 3 but Not Calcium or cAMP Signaling
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

α4β2 Nicotinic Receptors Partially Mediate Anti-Inflammatory Effects through Janus Kinase 2-Signal Transducer and Activator of Transcription 3 but Not Calcium or cAMP Signaling

Vishnu Hosur and Ralph H. Loring
Molecular Pharmacology January 1, 2011, 79 (1) 167-174; DOI: https://doi.org/10.1124/mol.110.066381

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

α4β2 Nicotinic Receptors Partially Mediate Anti-Inflammatory Effects through Janus Kinase 2-Signal Transducer and Activator of Transcription 3 but Not Calcium or cAMP Signaling

Vishnu Hosur and Ralph H. Loring
Molecular Pharmacology January 1, 2011, 79 (1) 167-174; DOI: https://doi.org/10.1124/mol.110.066381
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contribution
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics