Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Rab GTPases Bind at a Common Site within the Angiotensin II Type I Receptor Carboxyl-Terminal Tail: Evidence that Rab4 Regulates Receptor Phosphorylation, Desensitization, and Resensitization

Jessica L. Esseltine, Lianne B. Dale and Stephen S. G. Ferguson
Molecular Pharmacology January 2011, 79 (1) 175-184; DOI: https://doi.org/10.1124/mol.110.068379
Jessica L. Esseltine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lianne B. Dale
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen S. G. Ferguson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The human angiotensin II type 1 receptor (AT1R) is a member of the G protein-coupled receptor (GPCR) superfamily and represents an important target for cardiovascular therapeutic intervention. Agonist-activation of the AT1R induces β-arrestin-dependent endocytosis to early endosomes in which the receptor resides as a protein complex with the Rab GTPase Rab5. In the present study, we examined whether other Rab GTPases that regulate receptor trafficking through endosomal compartments also bind to the AT1R. We find that Rab4, Rab7, and Rab11 all bind to the last 10 amino acid residues of the AT1R carboxyl-terminal tail. Rab11 binds AT1R more effectively than Rab5, whereas Rab4 binds less effectively than Rab5. Alanine scanning mutagenesis reveals that proline 354 and cysteine 355 contribute to Rab protein binding, and mutation of these residues does not affect G protein coupling. We find that the Rab GTPases each compete with one another for receptor binding and that although Rab4 interacts poorly with the AT1R, it effectively displaces Rab11 from the receptor. In contrast, Rab11 overexpression does not prevent Rab4 binding to the AT1R. Overexpression of wild-type Rab4, but not Rab11, facilitates AT1R dephosphorylation, and a constitutively active Rab4-Q67L mutant reduces AT1R desensitization and promotes AT1R resensitization. Taken together, our data indicate that multiple Rab GTPases bind to a motif localized to the distal end of the AT1R tail and that increased Rab4 activity may contribute to the regulation AT1R desensitization and dephosphorylation.

Footnotes

  • This work was supported by the Heart and Stroke Foundation of Ontario [Grant T-5933]; an Ontario Graduate Scholarship (to J.L.E.); a Tier I Canada Research Chair in Molecular Neurobiology (to S.S.G.F.); and the Heart and Stroke Foundation of Ontario Career Investigator Award (to S.S.G.F.).

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    doi:10.1124/mol.110.068379.

  • ABBREVIATIONS:

    AT1R
    angiotensin II type 1 receptor
    GPCR
    G protein-coupled receptor
    β2AR
    β2-adrenergic receptor
    HEK
    human embryonic kidney
    HBSS
    HEPES-buffered saline solution
    AngII
    Angiotensin II
    PBS
    phosphate-buffered saline
    PAGE
    polyacrylamide gel electrophoresis
    GFP
    green fluorescent protein
    AT1AR
    angiotensin II type 1A receptor
    HA
    hemagglutinin
    IP
    inositol phosphate.

  • Received August 24, 2010.
  • Accepted October 13, 2010.
  • Copyright © 2011 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 79 (1)
Molecular Pharmacology
Vol. 79, Issue 1
1 Jan 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Rab GTPases Bind at a Common Site within the Angiotensin II Type I Receptor Carboxyl-Terminal Tail: Evidence that Rab4 Regulates Receptor Phosphorylation, Desensitization, and Resensitization
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Rab GTPases Bind at a Common Site within the Angiotensin II Type I Receptor Carboxyl-Terminal Tail: Evidence that Rab4 Regulates Receptor Phosphorylation, Desensitization, and Resensitization

Jessica L. Esseltine, Lianne B. Dale and Stephen S. G. Ferguson
Molecular Pharmacology January 1, 2011, 79 (1) 175-184; DOI: https://doi.org/10.1124/mol.110.068379

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Rab GTPases Bind at a Common Site within the Angiotensin II Type I Receptor Carboxyl-Terminal Tail: Evidence that Rab4 Regulates Receptor Phosphorylation, Desensitization, and Resensitization

Jessica L. Esseltine, Lianne B. Dale and Stephen S. G. Ferguson
Molecular Pharmacology January 1, 2011, 79 (1) 175-184; DOI: https://doi.org/10.1124/mol.110.068379
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Author Contributions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics