Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Novel UDP Glycosyltransferase 3A2: Cloning, Catalytic Properties, and Tissue Distribution

Peter I. MacKenzie, Anne Rogers, David J. Elliot, Nuy Chau, Julie-Ann Hulin, John O. Miners and Robyn Meech
Molecular Pharmacology March 2011, 79 (3) 472-478; DOI: https://doi.org/10.1124/mol.110.069336
Peter I. MacKenzie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne Rogers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David J. Elliot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nuy Chau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julie-Ann Hulin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John O. Miners
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robyn Meech
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The human UDP glycosyltransferase (UGT) 3A family is one of three families involved in the metabolism of small lipophilic compounds. Members of these families catalyze the addition of sugar residues to chemicals, which enhances their excretion from the body. The UGT1 and UGT2 family members primarily use UDP glucuronic acid to glucuronidate numerous compounds, such as steroids, bile acids, and therapeutic drugs. We showed recently that UGT3A1, the first member of the UGT3 family to be characterized, is unusual in using UDP N-acetylglucosamine as sugar donor, rather than UDP glucuronic acid or other UDP sugar nucleotides (J Biol Chem 283:36205–36210, 2008). Here, we report the cloning, expression, and characterization of UGT3A2, the second member of the UGT3 family. Like UGT3A1, UGT3A2 is inactive with UDP glucuronic acid as sugar donor. However, in contrast to UGT3A1, UGT3A2 uses both UDP glucose and UDP xylose but not UDP N-acetylglucosamine to glycosidate a broad range of substrates including 4-methylumbelliferone, 1-hydroxypyrene, bioflavones, and estrogens. It has low activity toward bile acids and androgens. UGT3A2 transcripts are found in the thymus, testis, and kidney but are barely detectable in the liver and gastrointestinal tract. The low expression of UGT3A2 in the latter, which are the main organs of drug metabolism, suggests that UGT3A2 has a more selective role in protecting the organs in which it is expressed against toxic insult rather than a more generalized role in drug metabolism. The broad substrate and novel UDP sugar specificity of UGT3A2 would be advantageous for such a function.

Footnotes

  • This work was supported by the National Health and Medical Research Council (NHMRC) of Australia [NHMRC Senior Principal Research Fellowship (to P.I.M.).

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    doi:10.1124/mol.110.069336.

  • ABBREVIATIONS:

    UGT
    UDP glycosyltransferase
    HEK
    human embryonic kidney
    4-MU
    4-methylumbelliferone
    GAPDH
    glyceraldehyde-3-phosphate dehydrogenase
    PCR
    polymerase chain reaction
    HPLC
    high-performance liquid chromatography
    GAG
    glycosaminoglycan.

  • Received October 12, 2010.
  • Accepted November 18, 2010.
  • Copyright © 2011 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 79 (3)
Molecular Pharmacology
Vol. 79, Issue 3
1 Mar 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Novel UDP Glycosyltransferase 3A2: Cloning, Catalytic Properties, and Tissue Distribution
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Novel UDP Glycosyltransferase 3A2: Cloning, Catalytic Properties, and Tissue Distribution

Peter I. MacKenzie, Anne Rogers, David J. Elliot, Nuy Chau, Julie-Ann Hulin, John O. Miners and Robyn Meech
Molecular Pharmacology March 1, 2011, 79 (3) 472-478; DOI: https://doi.org/10.1124/mol.110.069336

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Novel UDP Glycosyltransferase 3A2: Cloning, Catalytic Properties, and Tissue Distribution

Peter I. MacKenzie, Anne Rogers, David J. Elliot, Nuy Chau, Julie-Ann Hulin, John O. Miners and Robyn Meech
Molecular Pharmacology March 1, 2011, 79 (3) 472-478; DOI: https://doi.org/10.1124/mol.110.069336
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics