Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Potent and Novel Thiosemicarbazone Chelators Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone and 2-Benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone Affect Crucial Thiol Systems Required for Ribonucleotide Reductase Activity

Yu Yu, Yohan Suryo Rahmanto, Clare L. Hawkins and Des R. Richardson
Molecular Pharmacology June 2011, 79 (6) 921-931; DOI: https://doi.org/10.1124/mol.111.071324
Yu Yu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yohan Suryo Rahmanto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Clare L. Hawkins
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Des R. Richardson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone possesses potent and selective antitumor activity. Its cytotoxicity has been attributed to iron chelation leading to inhibition of the iron-containing enzyme ribonucleotide reductase (RR). Thiosemicarbazone iron complexes have been shown to be redox-active, although their effect on cellular antioxidant systems is unclear. Using a variety of antioxidants, we found that only N-acetylcysteine significantly inhibited thiosemicarbazone-induced antiproliferative activity. Thus, we examined the effects of thiosemicarbazones on major thiol-containing systems considering their key involvement in providing reducing equivalents for RR. Thiosemicarbazones significantly (p < 0.001) elevated oxidized trimeric thioredoxin levels to 213 ± 5% (n = 3) of the control. This was most likely due to a significant (p < 0.01) decrease in thioredoxin reductase activity to 65 ± 6% (n = 4) of the control. We were surprised to find that the non–redox-active chelator desferrioxamine increased thioredoxin oxidation to a lower extent (152 ± 9%; n = 3) and inhibited thioredoxin reductase activity (62 ± 5%; n = 4), but at a 10-fold higher concentration than thiosemicarbazones. In contrast, only the thiosemicarbazones significantly (p < 0.05) reduced the glutathione/oxidized-glutathione ratio and the activity of glutaredoxin that requires glutathione as a reductant. All chelators significantly decreased RR activity, whereas the NADPH/NADPtotal ratio was not reduced. This was important to consider because NADPH is required for thiol reduction. Thus, thiosemicarbazones could have an additional mechanism of RR inhibition via their effects on major thiol-containing systems.

Footnotes

  • ↵Embedded Image The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.

  • This work was supported by the National Health and Medical Research Council of Australia [Grants 570952, 570829]; the National Heart Foundation Fellowship [CR08S 3959]; and the Cancer Institute New South Wales [Research Scholar Award 07/RSA/1-33, Early Career Development Fellowships 08/ECF/1-36].

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    doi:10.1124/mol.111.071324.

  • ABBREVIATIONS:

    ROS
    reactive oxygen species
    ATO
    arsenic trioxide
    BCNU
    bis-chloronitrosourea
    Bp44mT
    2-benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone
    Bp4eT
    2-benzoylpyridine-4-ethyl-3-thiosemicarbazone
    BSO
    buthionine sulfoximine
    DFO
    desferrioxamine
    Dp44mT
    di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone
    DTT
    dithiothreitol
    EPR
    electron paramagnetic resonance
    GR
    glutathione reductase
    Grx
    glutaredoxin
    GSH
    glutathione
    GSSG
    oxidized glutathione
    NAC
    N-acetylcysteine
    RR
    ribonucleotide reductase
    SOD
    superoxide dismutase
    TfR1
    transferrin receptor-1
    Trx
    thioredoxin
    TrxR
    thioredoxin reductase
    Trx
    thioredoxin
    PKIH
    pyridylketone isonicotinoyl hydrazone.

  • Received January 21, 2011.
  • Accepted March 9, 2011.
  • Copyright © 2011 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 79 (6)
Molecular Pharmacology
Vol. 79, Issue 6
1 Jun 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Potent and Novel Thiosemicarbazone Chelators Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone and 2-Benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone Affect Crucial Thiol Systems Required for Ribonucleotide Reductase Activity
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Potent and Novel Thiosemicarbazone Chelators Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone and 2-Benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone Affect Crucial Thiol Systems Required for Ribonucleotide Reductase Activity

Yu Yu, Yohan Suryo Rahmanto, Clare L. Hawkins and Des R. Richardson
Molecular Pharmacology June 1, 2011, 79 (6) 921-931; DOI: https://doi.org/10.1124/mol.111.071324

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Potent and Novel Thiosemicarbazone Chelators Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone and 2-Benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone Affect Crucial Thiol Systems Required for Ribonucleotide Reductase Activity

Yu Yu, Yohan Suryo Rahmanto, Clare L. Hawkins and Des R. Richardson
Molecular Pharmacology June 1, 2011, 79 (6) 921-931; DOI: https://doi.org/10.1124/mol.111.071324
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics