Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Heteropoda Toxin 2 Interaction with Kv4.3 and Kv4.1 Reveals Differences in Gating Modification

Christopher V. DeSimone, Vladislav V. Zarayskiy, Vladimir E. Bondarenko and Michael J. Morales
Molecular Pharmacology August 2011, 80 (2) 345-355; DOI: https://doi.org/10.1124/mol.111.072405
Christopher V. DeSimone
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vladislav V. Zarayskiy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vladimir E. Bondarenko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael J. Morales
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Kv4 (Shal) potassium channels are responsible for the transient outward K+ currents in mammalian hearts and central nervous systems. Heteropoda toxin 2 (HpTx2) is an inhibitor cysteine knot peptide toxin specific for Kv4 channels that inhibits gating of Kv4.3 in the voltage-dependent manner typical for this type of toxin. HpTx2 interacts with four independent binding sites containing two conserved hydrophobic amino acids in the S3b transmembrane segments of Kv4.3 and the closely related Kv4.1. Despite these similarities, HpTx2 interaction with Kv4.1 is considerably less voltage-dependent, has smaller shifts in the voltage-dependences of conductance and steady-state inactivation, and a 3-fold higher Kd value. Swapping four nonconserved amino acids in S3b between the two channels exchanges the phenotypic response to HpTx2. To understand these differences in gating modification, we constructed Markov models of Kv4.3 and Kv4.1 activation gating in the presence of HpTx2. Both models feature a series of voltage-dependent steps leading to a final voltage-independent transition to the open state and closely replicate the experimental data. Interaction with HpTx2 increases the energy barrier for channel opening by slowing activation and accelerating deactivation. The greater degree of voltage-dependence in Kv4.3 occurs because it is the voltage-dependent transitions that are most affected by HpTx2; in contrast, it is the voltage-independent step in Kv4.1 that is most affected by the presence of toxin. These data demonstrate the basis for subtype-specificity of HpTx2 and point the way to a general model of gating modifier toxin interaction with voltage-gated ion channels.

Footnotes

  • This work was supported by the American Heart Association Founders and Southeast Affiliates [Scientist Development Grant 0235500T, Predoctoral Fellowship 0615662T, Grant-in-aid 10GRNT4720012]; the John R. Oishei Foundation; and a Georgia State University Brain and Behavior Research Initiation Grant.

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    doi:10.1124/mol.111.072405.

  • ABBREVIATIONS:

    HpTx2
    Heteropoda toxin 2
    TMS
    transmembrane segment
    VSD
    voltage-sensor domain
    ICK
    inhibitor cysteine knot
    SSIA
    steady-state inactivation
    G-V
    conductance-voltage.

  • Received March 22, 2011.
  • Accepted April 26, 2011.
  • Copyright © 2011 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 80 (2)
Molecular Pharmacology
Vol. 80, Issue 2
1 Aug 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Heteropoda Toxin 2 Interaction with Kv4.3 and Kv4.1 Reveals Differences in Gating Modification
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Heteropoda Toxin 2 Interaction with Kv4.3 and Kv4.1 Reveals Differences in Gating Modification

Christopher V. DeSimone, Vladislav V. Zarayskiy, Vladimir E. Bondarenko and Michael J. Morales
Molecular Pharmacology August 1, 2011, 80 (2) 345-355; DOI: https://doi.org/10.1124/mol.111.072405

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Heteropoda Toxin 2 Interaction with Kv4.3 and Kv4.1 Reveals Differences in Gating Modification

Christopher V. DeSimone, Vladislav V. Zarayskiy, Vladimir E. Bondarenko and Michael J. Morales
Molecular Pharmacology August 1, 2011, 80 (2) 345-355; DOI: https://doi.org/10.1124/mol.111.072405
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics