Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Xanthines Down-Regulate the Drug Transporter ABCG2 and Reverse Multidrug Resistance

Rui Ding, Jia Shi, Kirk Pabon and Kathleen W. Scotto
Molecular Pharmacology March 2012, 81 (3) 328-337; DOI: https://doi.org/10.1124/mol.111.075556
Rui Ding
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jia Shi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kirk Pabon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kathleen W. Scotto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

ABCG2 is an ATP-binding-cassette (ABC) transporter that confers multidrug resistance (MDR) to tumor cells by extruding a broad variety of chemotherapeutic agents, ultimately leading to failure of cancer therapy. Thus, the down-regulation of ABCG2 expression and/or function has been proposed as part of a regimen to improve cancer therapeutic efficacy. In this study, we found that a group of xanthines including caffeine, theophylline, and dyphylline can dramatically decrease ABCG2 protein in cells that have either moderate (BeWo, a placental choriocarcinoma cell line) or high (MCF-7/MX100, a breast cancer drug-resistant cell subline) levels of ABCG2 expression. This down-regulation is time-dependent, dose-dependent, and reversible. Using lysosomal inhibitors, we found that xanthines decreased ABCG2 by inducing its rapid internalization and lysosome-mediated degradation. As a consequence, caffeine treatment significantly increased the retention of an established ABCG2 substrate in MCF-7/MX100 cells but not in parental MCF-7 cells and sensitized the MDR cells to the chemotherapeutic agent mitoxantrone (MX); combination treatment with MX and caffeine decreased the IC50 of MX ∼10-fold and induced a greater degree of apoptotic cell death than MX treatment alone. Taken together, our results describe a novel function for this large class of therapeutically relevant compounds and suggest that a subset of xanthines could be developed as combination therapy to improve the efficacy of anticancer drugs that are ABCG2 substrates.

Footnotes

  • This study was supported by the National Institutes of Health National Cancer Institute [Grants P30-CA072720, R01-CA122573] and the University of Medicine and Dentistry of New Jersey Foundation Grant program.

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    http://dx.doi.org/10.1124/mol.111.075556.

  • ABBREVIATIONS:

    ABC
    ATP-binding cassette
    MDR
    multidrug resistance
    CSC
    cancer stem cell
    MX
    mitoxantrone
    GAPDH
    glyceraldehyde-3-phosphate dehydrogenase
    PBS
    phosphate-buffered saline
    FTC
    fumitremorgin C
    BP
    Bodipy-prazosin
    DPCPX
    1,3-dipropyl-8-cyclopentylxanthine.

  • Received September 9, 2011.
  • Accepted November 23, 2011.
  • Copyright © 2012 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 81 (3)
Molecular Pharmacology
Vol. 81, Issue 3
1 Mar 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Xanthines Down-Regulate the Drug Transporter ABCG2 and Reverse Multidrug Resistance
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Xanthines Down-Regulate ABCG2 Expression

Rui Ding, Jia Shi, Kirk Pabon and Kathleen W. Scotto
Molecular Pharmacology March 1, 2012, 81 (3) 328-337; DOI: https://doi.org/10.1124/mol.111.075556

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Xanthines Down-Regulate ABCG2 Expression

Rui Ding, Jia Shi, Kirk Pabon and Kathleen W. Scotto
Molecular Pharmacology March 1, 2012, 81 (3) 328-337; DOI: https://doi.org/10.1124/mol.111.075556
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics