Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Functional and Pharmacological Characteristics of Metabotropic Glutamate Receptors 2/4 Heterodimers

Paul J. Kammermeier
Molecular Pharmacology September 2012, 82 (3) 438-447; DOI: https://doi.org/10.1124/mol.112.078501
Paul J. Kammermeier
Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Metabotropic glutamate receptors (mGluRs) were thought until recently to function mainly as stable homodimers, but recent work suggests that heteromerization is possible. Despite the growth in available compounds targeting mGluRs, little is known about the pharmacological profile of mGluR heterodimers. Here, this question was addressed for the mGluR2/4 heterodimer, examined by coexpressing both receptors in isolated sympathetic neurons from the rat superior cervical ganglion (SCG), a native neuronal system with a null mGluR background. Under conditions that favor mGluR2/4 heterodimer formation, activation of the receptor was not evident with the mGluR2-selective agonist (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG-IV) or with the mGluR4 selective agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4); however, full activation was apparent when both ligands were applied together, confirming that mGluR dimers require ligand binding in both subunits for full activation. Properties of allosteric modulators were also examined, including the findings that negative allosteric modulators (NAMs) have two binding sites per dimer and that positive allosteric modulators (PAMs) have only a single site per dimer. In SCG neurons, mGluR2/4 dimers were not inhibited by the mGluR2-selective NAM (Z)-1-[2-cycloheptyloxy-2-(2,6-dichlorophenyl)ethenyl]-1H-1,2,4-triazole (Ro 64-5229), supporting the two-site model. Furthermore, application of the mGluR4 selective PAMs N-(4-chloro-3-methoxyphenyl)-2-pyridinecarboxamide (VU0361737) or N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) and combined application of mGluR4 PAMs with the mGluR2 selective PAM biphenyl indanone-A failed to potentiate glutamate responses through mGluR2/4, suggesting that mGluR2/4 heterodimers are not modulatable by PAMs that are currently available.

Footnotes

  • This work was supported in part by the National Institutes of Health National Institute of General Medical Sciences [Grant GM101023].

  • Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

    http://dx.doi.org/10.1124/mol.112.078501.

  • ABBREVIATIONS:

    mGluRs
    metabotropic glutamate receptors
    SCG
    superior cervical ganglion
    NAM
    negative allosteric modulator
    PAM
    positive allosteric modulator
    VU0361737 (VU036)
    N-(4-chloro-3-methoxyphenyl)-2-pyridinecarboxamide
    BINA
    biphenyl indanone-A
    PHCCC
    N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide
    l-AP4
    l-(+)-2-amino-4-phosphonobutyric acid
    DCG-IV
    (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine
    Ro 64-5229
    (Z)-1-[2-cycloheptyloxy-2-(2,6-dichlorophenyl)ethenyl]-1H-1,2,4-triazole
    PTX
    pertussis toxin.

  • Received February 25, 2012.
  • Accepted May 31, 2012.
  • Copyright © 2012 The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 82 (3)
Molecular Pharmacology
Vol. 82, Issue 3
1 Sep 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional and Pharmacological Characteristics of Metabotropic Glutamate Receptors 2/4 Heterodimers
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Function and Pharmacology of mGluR2/4 Heterodimers

Paul J. Kammermeier
Molecular Pharmacology September 1, 2012, 82 (3) 438-447; DOI: https://doi.org/10.1124/mol.112.078501

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Function and Pharmacology of mGluR2/4 Heterodimers

Paul J. Kammermeier
Molecular Pharmacology September 1, 2012, 82 (3) 438-447; DOI: https://doi.org/10.1124/mol.112.078501
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
  • Allosteric Modulation of Metabotropic Glutamate Receptor 1
  • Mechanism of Selective Action of Paraherquamide A
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics