Abstract
P-glycoprotein (P-gp/MDR1) is a multispecific efflux transporter regulating the pharmacokinetics of various drugs. Although P-gp expression in the small intestine is elevated after liver ischemia-reperfusion (I/R) injury, the regulatory mechanism remains to be clarified. MicroRNAs (miRNAs) play an important role in the post-transcriptional regulation of the expression of drug transporters. Here, we investigated the intestinal expression profile of miRNAs after liver I/R and the role of miRNAs in the post-transcriptional regulation of P-gp in intestinal epithelial cells. Microarray analysis showed that microRNA-145 (miR-145) level was decreased in the small intestine of I/R rats. This downregulation of miR-145 was further confirmed by real-time polymerase chain reaction. In silico analysis revealed that 3′-untranslated regions (UTRs) of rat Mdr1a, mouse Mdr1a, and human MDR1 mRNA retain binding sites for miR-145. Luciferase assays using MDR1 3′-UTR reporter plasmid in HEK293 cells showed that luciferase activity was decreased by the overexpression of miR-145, and the deletion of miR-145 binding site within MDR1 3′-UTR abolished this decreased luciferase activity. The downregulation of miR-145 in Caco-2 cells, an epithelial cell line derived from human colon, increased P-gp expression and efflux activity of rhodamine 123, but not MDR1 mRNA level. These findings demonstrated that miR-145 negatively regulates the expression and function of P-gp through the repression of mRNA by direct interaction on the 3′-UTR of MDR1 mRNA. In addition, the downregulation of miR-145 should significantly contribute to the elevated intestinal P-gp expression after liver I/R. Our results provide new insight into the post-transcriptional regulation of intestinal P-gp.
Footnotes
This work was supported by a Grant-in-Aid for Scientific Research (C) [23590180] and a Grant-in-Aid for Young Scientists (B) [23790206] from the Japan Society for the Promotion of Science.
↵
This article has supplemental material available at molpharm.aspetjournals.org.
- Received August 12, 2012.
- Accepted November 19, 2012.
- Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|