Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetically modified muscarinic acetylcholine receptors (mAChRs) that have minimal responsiveness to acetylcholine (ACh) but are potently and efficaciously activated by an otherwise inert synthetic ligand, clozapine-N-oxide (CNO). DREADDs have been used as tools for selectively modulating signal transduction pathways in vitro and in vivo. Recent comprehensive studies have validated how the pharmacology of a CNO-bound DREADD mirrors that of an ACh-bound wild-type (WT) mAChR. However, nothing is known about whether this equivalence extends to the allosteric modulation of DREADDs by small molecules. To address this, we investigated the actions at an M1 DREADD of benzyl quinolone carboxylic acid (BQCA), a positive allosteric modulator of ACh binding and function that is known to behave according to a simple two-state mechanism at the WT receptor. We found that allosteric modulation of the CNO-bound DREADD receptor is not equivalent to the corresponding modulation of the ACh-bound WT receptor. We also found that BQCA engenders stimulus bias at the M1 DREADD, having differential types of cooperativity depending on the signaling pathway. Furthermore, the modulation of ACh itself by BQCA at the DREADD is not compatible with the two-state model that we previously applied to the M1 WT receptor.
Footnotes
This work was funded by the National Health and Medical Research Council of Australia (NHMRC) [Program Grant 519461] (A.C., P.M.S), [Project Grant APP1011796] (M.C), and [Project Grant APP1011920] (J.R.L.). A.C is a Senior, and P.M.S a Principal, Research Fellow of the NHMRC. A.A. is a recipient of an Australian Postgraduate Award scholarship.
↵
This article has supplemental material available at molpharm.aspetjournals.org.
- Received October 17, 2012.
- Accepted November 29, 2012.
- Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|