Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Muscarinic Receptors as Model Targets and Antitargets for Structure-Based Ligand Discovery

Andrew C. Kruse, Dahlia R. Weiss, Mario Rossi, Jianxin Hu, Kelly Hu, Katrin Eitel, Peter Gmeiner, Jürgen Wess, Brian K. Kobilka and Brian K. Shoichet
Molecular Pharmacology October 2013, 84 (4) 528-540; DOI: https://doi.org/10.1124/mol.113.087551
Andrew C. Kruse
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California (A.C.K., B.K.K.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California (D.R.W., B.K.S.); Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (B.K.S.); Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R., J.H., K.H., J.W.); and Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany (K.E., P.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dahlia R. Weiss
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California (A.C.K., B.K.K.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California (D.R.W., B.K.S.); Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (B.K.S.); Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R., J.H., K.H., J.W.); and Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany (K.E., P.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mario Rossi
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California (A.C.K., B.K.K.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California (D.R.W., B.K.S.); Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (B.K.S.); Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R., J.H., K.H., J.W.); and Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany (K.E., P.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianxin Hu
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California (A.C.K., B.K.K.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California (D.R.W., B.K.S.); Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (B.K.S.); Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R., J.H., K.H., J.W.); and Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany (K.E., P.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kelly Hu
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California (A.C.K., B.K.K.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California (D.R.W., B.K.S.); Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (B.K.S.); Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R., J.H., K.H., J.W.); and Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany (K.E., P.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katrin Eitel
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California (A.C.K., B.K.K.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California (D.R.W., B.K.S.); Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (B.K.S.); Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R., J.H., K.H., J.W.); and Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany (K.E., P.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Gmeiner
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California (A.C.K., B.K.K.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California (D.R.W., B.K.S.); Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (B.K.S.); Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R., J.H., K.H., J.W.); and Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany (K.E., P.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jürgen Wess
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California (A.C.K., B.K.K.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California (D.R.W., B.K.S.); Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (B.K.S.); Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R., J.H., K.H., J.W.); and Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany (K.E., P.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian K. Kobilka
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California (A.C.K., B.K.K.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California (D.R.W., B.K.S.); Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (B.K.S.); Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R., J.H., K.H., J.W.); and Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany (K.E., P.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian K. Shoichet
Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California (A.C.K., B.K.K.); Department of Pharmaceutical Chemistry, University of California, San Francisco, California (D.R.W., B.K.S.); Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (B.K.S.); Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R., J.H., K.H., J.W.); and Department of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany (K.E., P.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

G protein–coupled receptors (GPCRs) regulate virtually all aspects of human physiology and represent an important class of therapeutic drug targets. Many GPCR-targeted drugs resemble endogenous agonists, often resulting in poor selectivity among receptor subtypes and restricted pharmacologic profiles. The muscarinic acetylcholine receptor family exemplifies these problems; thousands of ligands are known, but few are receptor subtype–selective and nearly all are cationic in nature. Using structure-based docking against the M2 and M3 muscarinic receptors, we screened 3.1 million molecules for ligands with new physical properties, chemotypes, and receptor subtype selectivities. Of 19 docking-prioritized molecules tested against the M2 subtype, 11 had substantial activity and 8 represented new chemotypes. Intriguingly, two were uncharged ligands with low micromolar to high nanomolar Ki values, an observation with few precedents among aminergic GPCRs. To exploit a single amino-acid substitution among the binding pockets between the M2 and M3 receptors, we selected molecules predicted by docking to bind to the M3 and but not the M2 receptor. Of 16 molecules tested, 8 bound to the M3 receptor. Whereas selectivity remained modest for most of these, one was a partial agonist at the M3 receptor without measurable M2 agonism. Consistent with this activity, this compound stimulated insulin release from a mouse β-cell line. These results support the ability of structure-based discovery to identify new ligands with unexplored chemotypes and physical properties, leading to new biologic functions, even in an area as heavily explored as muscarinic pharmacology.

Footnotes

    • Received May 24, 2013.
    • Accepted July 19, 2013.
  • A.C.K. and D.R.W. contributed equally to this work and should be considered co-first authors.

  • This work was supported by the National Science Foundation [Grant CHE-1223785]; and the National Institutes of Health [Grant P01 GM106990] and [Grants R01 GM71896 (to B.K.S.), R01 NS028471 (to B.K.K.), and F32 GM093580 (to D.R.W.)]. Support was also provided by the Intramural Research Program of the National Institutes of Health [National Institute of Diabetes and Digestive and Kidney Diseases] (to J.W.); the Mathers Charitable Foundation (to BKK); Bavaria California Technology Center (to M.R., J.H., K.H., P.G., and K.E.); and the National Science Foundation (Graduate Research Fellowship to A.C.K.).

  • dx.doi.org/10.1124/mol.113.087551.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • U.S. Government work not protected by U.S. copyright
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 84 (4)
Molecular Pharmacology
Vol. 84, Issue 4
1 Oct 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Muscarinic Receptors as Model Targets and Antitargets for Structure-Based Ligand Discovery
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Structure-Based Ligand Discovery for Muscarinic Receptors

Andrew C. Kruse, Dahlia R. Weiss, Mario Rossi, Jianxin Hu, Kelly Hu, Katrin Eitel, Peter Gmeiner, Jürgen Wess, Brian K. Kobilka and Brian K. Shoichet
Molecular Pharmacology October 1, 2013, 84 (4) 528-540; DOI: https://doi.org/10.1124/mol.113.087551

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Structure-Based Ligand Discovery for Muscarinic Receptors

Andrew C. Kruse, Dahlia R. Weiss, Mario Rossi, Jianxin Hu, Kelly Hu, Katrin Eitel, Peter Gmeiner, Jürgen Wess, Brian K. Kobilka and Brian K. Shoichet
Molecular Pharmacology October 1, 2013, 84 (4) 528-540; DOI: https://doi.org/10.1124/mol.113.087551
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics