Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Expression of Aryl Hydrocarbon Receptor Nuclear Translocator Enhances Cisplatin Resistance by Upregulating MDR1 Expression in Cancer Cells

Ya-Yi Chan, Sriram Kalpana, Wei-Chiao Chang, Wen-Chang Chang and Ben-Kuen Chen
Molecular Pharmacology October 2013, 84 (4) 591-602; DOI: https://doi.org/10.1124/mol.113.087197
Ya-Yi Chan
Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Y.-Y.C., S.K., B.-K.C.); Department of Clinical Pharmacology and Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacology, Taipei Medical University, Taipei, Taiwan (W.-Chi.C.); Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (W.-Cha.C.); Department of Pharmacy, Taipei Medical University–Wanfang Hospital, Taipei, Taiwan (W.-Chi.C.); and Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (B.-K.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sriram Kalpana
Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Y.-Y.C., S.K., B.-K.C.); Department of Clinical Pharmacology and Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacology, Taipei Medical University, Taipei, Taiwan (W.-Chi.C.); Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (W.-Cha.C.); Department of Pharmacy, Taipei Medical University–Wanfang Hospital, Taipei, Taiwan (W.-Chi.C.); and Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (B.-K.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wei-Chiao Chang
Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Y.-Y.C., S.K., B.-K.C.); Department of Clinical Pharmacology and Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacology, Taipei Medical University, Taipei, Taiwan (W.-Chi.C.); Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (W.-Cha.C.); Department of Pharmacy, Taipei Medical University–Wanfang Hospital, Taipei, Taiwan (W.-Chi.C.); and Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (B.-K.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wen-Chang Chang
Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Y.-Y.C., S.K., B.-K.C.); Department of Clinical Pharmacology and Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacology, Taipei Medical University, Taipei, Taiwan (W.-Chi.C.); Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (W.-Cha.C.); Department of Pharmacy, Taipei Medical University–Wanfang Hospital, Taipei, Taiwan (W.-Chi.C.); and Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (B.-K.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ben-Kuen Chen
Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Y.-Y.C., S.K., B.-K.C.); Department of Clinical Pharmacology and Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacology, Taipei Medical University, Taipei, Taiwan (W.-Chi.C.); Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (W.-Cha.C.); Department of Pharmacy, Taipei Medical University–Wanfang Hospital, Taipei, Taiwan (W.-Chi.C.); and Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (B.-K.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The identification of molecular pathways in cancer cells is important for understanding the cells’ underlying biology and for designing effective cancer therapies. We demonstrate that the expression of aryl hydrocarbon receptor nuclear translocator (ARNT) is critical during the development of cisplatin resistance. The reduced expression of ARNT was correlated with cisplatin-induced cell death in drug-sensitive cells. In addition, suppression of ARNT reversed the characteristics of cisplatin-resistant cells, making these cells cisplatin-sensitive, and significantly enhanced caspase-3 activation, DNA fragmentation, and apoptosis. The inhibition of colony formation, regulated by cisplatin, was more significant in ARNT-knockdown cells than in parental cells. In a xenograft analysis of severe combined immunodeficiency mice, cisplatin also efficiently inhibited ARNT-deficient c4 tumors but not ARNT-containing vT2 tumor formation. Furthermore, the downregulation of multidrug resistance 1 (MDR1) expression and retention of drugs in cells caused by suppression of ARNT, resulting in the resensitization of drug-resistant cells to cisplatin, was observed. When overexpressed, ARNT interacted with Sp1 to enhance the expression of MDR1 through Sp1-binding sites on the MDR1 promoter, resulting in a reversal of the effect of cisplatin on cell death. In addition, ARNT-induced MDR1 expression was inhibited in Sp1-knockdown cells. These results reveal previously unrecognized, multifaceted functions of ARNT in establishing the drug-resistant properties of cancer cells by the upregulation of MDR1, highlighting ARNT’s potential as a therapeutic target in an important subset of cancers.

Footnotes

    • Received May 7, 2013.
    • Accepted July 31, 2013.
  • Y.-Y.C. and S.K. contributed equally to this work.

  • This work was supported by the National Science Council of Taiwan [Grant NSC 99-2320-B-006-006-MY3 and NSC 101-2320-B-038-022]; and National Cheng Kung University [Project of Promoting Academic Excellence and Developing World-Class Research Centers].

  • dx.doi.org/10.1124/mol.113.087197.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 84 (4)
Molecular Pharmacology
Vol. 84, Issue 4
1 Oct 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Expression of Aryl Hydrocarbon Receptor Nuclear Translocator Enhances Cisplatin Resistance by Upregulating MDR1 Expression in Cancer Cells
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

ARNT Regulates Drug Resistance

Ya-Yi Chan, Sriram Kalpana, Wei-Chiao Chang, Wen-Chang Chang and Ben-Kuen Chen
Molecular Pharmacology October 1, 2013, 84 (4) 591-602; DOI: https://doi.org/10.1124/mol.113.087197

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

ARNT Regulates Drug Resistance

Ya-Yi Chan, Sriram Kalpana, Wei-Chiao Chang, Wen-Chang Chang and Ben-Kuen Chen
Molecular Pharmacology October 1, 2013, 84 (4) 591-602; DOI: https://doi.org/10.1124/mol.113.087197
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • EIPA, HMA and SMN2 gene regulation
  • Clc-2 has minor role in intestinal Cl- secretion
  • Resveratrol acts as an NR4A1 antagonist in lung cancer.
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics